Graphs, Trees and Geometric Group Theory

图、树和几何群论

基本信息

  • 批准号:
    0705960
  • 负责人:
  • 金额:
    $ 23.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-15 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

A fundamental technique in group theory is to study groups by examining their actions on topological spaces. If one restricts attention to spaces with strong geometric properties (such as metric trees or CAT(0) spaces), one can often make the set of actions of G into a topological space itself, called a deformation space, with good topological properties. The automorphism group of G acts on the deformation space by twisting each action to get a new action. In this project we study automorphism groups of various classes of groups by studying their actions on deformation spaces. For free groups, the relevant deformation space, originally defined by the PI and M. Culler, is known as Outer space. A fairly recent development in this subject is that Morita used a connection found by Kontsevich between Outer space and a certain infinite-dimensional symplectic Lie algebra to detect cocycles for Out(F_n), the group of outer automorphisms of the free group of rank n. The PI and J. Conant have reinterpreted these cocycles as cycles on the quotient of Outer space by the action of Out(F_n), and plan to use these to study the unstable cohomology of Out(F_n). A second goal of this project, joint with R. Charney, is to develop an analog of Outer space for right-angled Artin groups, a class which includes both free groups and free abelian groups. A third component is motivated by previous work of the PI on stability of the homology of Out(F_n) and Aut(F_n). Techniques developed for proving these stability results apply to other sequences of groups related to low-dimensional topology, and the PI will further investigate these applications. Other ongoing projects include a study of the space of phylogenetic trees and an investigation of rigidity properties of Out(F_n). A phenomenon which occurs throughout mathematics and the sciences is that complicated structures can often be understood more easily by codifying the information they contain in terms of graphs and trees. On example of this is the use of graphs and trees to describe the possible splittings of an algebraic object called a group into simpler pieces. When there are many possible splittings, one can construct deformation spaces which measure the ambiguity. In this project we study groups by considering actions of the symmetries of the group on such deformation spaces.
群论中的一个基本技巧是通过考察群在拓扑空间上的作用来研究群。 如果把注意力限制在具有强几何性质的空间(如度量树或CAT(0)空间)上,人们通常可以使G的作用集 转化为具有良好拓扑性质的拓扑空间本身,称为变形空间。 G的自同构群通过扭曲每个作用量而作用在变形空间上,得到一个新的作用量。 在这个项目中,我们通过研究它们在变形空间上的作用来研究各类群的自同构群。 对于自由群,最初由PI和M定义的相关变形空间。卡勒,被称为外太空。 在这个问题上的一个相当新的发展是,森田利用Kontsevich发现的外层空间和某个无限维辛李代数之间的联系来检测Out(F_n)的上循环,Out(F_n)是秩为n的自由群的外自同构群。 PI和J.Conant将这些上圈重新解释为Out(F_n)作用于外层空间商上的圈,并计划利用它们来研究Out(F_n)的不稳定上同调。 该项目的第二个目标是与R. Charney,是开发一个类似的外太空直角阿廷群,一类,其中包括自由群和自由阿贝尔群。 第三部分是由PI以前关于Out(F_n)和Aut(F_n)同调稳定性的工作所激发的。 证明这些稳定性结果的技术适用于其他序列的低维拓扑相关的群体,PI将进一步研究这些应用。其他正在进行的项目包括系统发育树空间的研究和Out(F_n)的刚性性质的调查。 在数学和科学中,有一种现象是,通过将复杂的结构所包含的信息以图形和树的形式进行编码,往往可以更容易地理解复杂的结构。 一个例子是使用图和树来描述一个被称为群的代数对象可能分裂成更简单的片段。当存在许多可能的分裂时,可以构造测量模糊性的变形空间。 在这个项目中,我们通过考虑群的对称性在这种变形空间上的作用来研究群。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen Vogtmann其他文献

The Euler characteristic of the moduli space of graphs
图的模空间的欧拉特征
  • DOI:
    10.1016/j.aim.2023.109290
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Michael Borinsky;Karen Vogtmann
  • 通讯作者:
    Karen Vogtmann
Infinitesimal operations on complexes of graphs
  • DOI:
    10.1007/s00208-003-0465-2
  • 发表时间:
    2003-08-13
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Jim Conant;Karen Vogtmann
  • 通讯作者:
    Karen Vogtmann

Karen Vogtmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karen Vogtmann', 18)}}的其他基金

What Next? The Mathematical Legacy of Bill Thurston, June 23 - 27, 2014
接下来是什么?
  • 批准号:
    1406302
  • 财政年份:
    2014
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
Conference on Approaches to Group Theory
群论方法会议
  • 批准号:
    1039400
  • 财政年份:
    2010
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
Graphs, Trees and Geometric Group Theory
图、树和几何群论
  • 批准号:
    1011857
  • 财政年份:
    2010
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Continuing Grant
The Cornell Topology Festival
康奈尔拓扑节
  • 批准号:
    0531044
  • 财政年份:
    2005
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
Graphs, Trees and Geometric Group Theory
图、树和几何群论
  • 批准号:
    0204185
  • 财政年份:
    2002
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Continuing Grant
Geometric and Algebraic Topology
几何和代数拓扑
  • 批准号:
    9971607
  • 财政年份:
    1999
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Automorphisms of Free Groups
数学科学:自由群的自同构
  • 批准号:
    8805373
  • 财政年份:
    1988
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometries for Groups
数学科学:群几何
  • 批准号:
    8514548
  • 财政年份:
    1985
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
Cohomology of Linear Groups Over Rings of Imaginary Quadratic Integers (Mathematics)
虚数二次整数环上线性群的上同调(数学)
  • 批准号:
    8310340
  • 财政年份:
    1984
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometries For Some Linear Groups; Applications to Algebraic K-Theory, Automorphic Forms, Hyperbolic Geometry, and Singularities
数学科学:某些线性群的几何;
  • 批准号:
    8300873
  • 财政年份:
    1983
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant

相似海外基金

Barking up the right trees – A microbial solution for our methane problem
树皮正确 — 解决甲烷问题的微生物解决方案
  • 批准号:
    DE240100338
  • 财政年份:
    2024
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Discovery Early Career Researcher Award
Excellence in Research: Developing a Model System for Studying the Determinants of Flower Morphology in Tropical Dioecious Trees
卓越的研究:开发用于研究热带雌雄异株树木花形态决定因素的模型系统
  • 批准号:
    2401525
  • 财政年份:
    2024
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
Utilising novel Pongamia trees to decarbonise Australia’s beef value-chain
利用新型水黄皮树实现澳大利亚牛肉价值链脱碳
  • 批准号:
    LP220100090
  • 财政年份:
    2024
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Linkage Projects
Arboricrop: next generation agriculture using real-time information from trees crops
Arboricrop:利用树木作物实时信息的下一代农业
  • 批准号:
    10087410
  • 财政年份:
    2024
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Collaborative R&D
Development of physiological index on the stress tolerance and the analytical method of distribution of riparian trees
河岸树木抗逆生理指标的建立及分布分析方法
  • 批准号:
    23K04040
  • 财政年份:
    2023
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase II: Using a novel RNA therapy to immunize trees and vines against deadly bacteria
SBIR II 期:使用新型 RNA 疗法使树木和藤蔓免受致命细菌的侵害
  • 批准号:
    2223139
  • 财政年份:
    2023
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Cooperative Agreement
Genetic variation in the phenology of root growth and freezing tolerance of subarctic evergreen trees
亚北极常绿树木根系生长物候和耐冻性的遗传变异
  • 批准号:
    23K13983
  • 财政年份:
    2023
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NSFDEB-NERC: Gigante: Quantifying and upscaling the causes and drivers of death for giant tropical trees
NSFDEB-NERC:Gigante:量化和升级巨型热带树木死亡的原因和驱动因素
  • 批准号:
    NE/Y003942/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Research Grant
Detecting snow under and within trees with satellite lidar for improved climate and weather modelling
使用卫星激光雷达检测树下和树内的积雪,以改进气候和天气建模
  • 批准号:
    2890089
  • 财政年份:
    2023
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Studentship
Assessing the principal ecological strategies of trees in African woodlands and their implications for ecosystem dynamics and functionality
评估非洲林地树木的主要生态策略及其对生态系统动态和功能的影响
  • 批准号:
    2894591
  • 财政年份:
    2023
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了