Jordans Theorem in Number Theory, Group Theory, and Quantum Topology

数论、群论和量子拓扑中的乔丹定理

基本信息

  • 批准号:
    0100537
  • 负责人:
  • 金额:
    $ 9.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

The investigator intends to work on several projects related to variants of Jordan's theorem characterizing finite subgroups of GL(n). These include a joint project with Richard Pink to analyze the adelic image of Galois representations with coefficients in a function field, a joint project with Alex Lubotzky to understand specializations of Zariski-dense representations of discrete groups, and a joint project with Michael Freedman and Zhenghan Wang to understand monodromy of representations of mapping class groups arising from TQFTs. The last project is part of Freedman's project of replacing the qubit model of quantum computation with a new model based on ideas from quantum topology.Symmetry is a unifying theme in many areas of mathematics and physics, including the subjects touched on in this proposal, number theory, algebra, topology, and quantum field theory. Mathematicians have studied groups, that is, abstract symmetry types, for almost two hundred years. One of the earliest major results is Jordan's theorem, which asserts, more or less, that a geometric figure can have a complicated symmetry group only if it lives in a space of many dimensions. This proposal deals with several extensions and applications of Jordan's result. The motivating problem comes from algebraic number theory, the study of number systems. These systems can have intricate groups of symmetries, which can be externalized as symmetries of "spaces" analogous to the usual spaces of geometry. The investigator intends to probe the symmetry of certain number systems by means of a new extension of Jordan's theorem. In a different direction, the investigator intends to use a similar class of methods to analyze the internal symmetry of certain physical systems. Michael Freedman has recently proposed using the systems in question as the basis for a fundamentally new type of quantum computer which should be much less vulnerable to the decoherence problem which has plagued existing designs. For this to work, one needs a large enough symmetry group to allow the new machine to simulate the internal state of a machine of the old type.
调查人员打算工作的几个项目有关的变种约旦定理的特点有限子群的GL(n)。 其中包括与Richard Pink的联合项目,分析函数域中系数的Galois表示的adelic图像,与Alex Lubotzky的联合项目,以了解离散群的Zakirki密集表示的专业化,以及与Michael Freedman和Zhenghan Wang的联合项目,以了解TQFT产生的映射类群表示的单值性。 最后一个项目是弗里德曼的项目的一部分,该项目是用基于量子拓扑思想的新模型取代量子计算的量子比特模型。对称性是数学和物理学许多领域的统一主题,包括本提案涉及的主题,数论,代数,拓扑和量子场论。 数学家研究群,即抽象的对称类型,已经有近两百年的历史了。 最早的主要结果之一是乔丹定理,它或多或少地断言,一个几何图形只有在多维空间中才能有复杂的对称群。 本文讨论了Jordan结果的几个推广和应用。 激励问题来自代数数论,研究数字系统。 这些系统可以具有复杂的对称群,这些对称群可以具体化为类似于通常的几何空间的“空间”的对称。 研究者试图通过对约当定理的一个新的推广来探讨某些数系的对称性。 在另一个方向,研究者打算使用类似的方法来分析某些物理系统的内部对称性。 Michael Freedman最近提出,将这些系统作为一种全新的量子计算机的基础,这种计算机应该不那么容易受到困扰现有设计的退相干问题的影响。 要做到这一点,需要一个足够大的对称群,以允许新机器模拟旧类型机器的内部状态。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Larsen其他文献

Randomized sham-controlled trial of the 6-month swallowable gas-filled intragastric balloon system for weight loss.
对为期 6 个月的可吞咽充气胃内气球系统进行减肥的随机假对照试验。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Shelby Sullivan;J. Swain;G. Woodman;S. Edmundowicz;T. Hassanein;V. Shayani;John Fang;M. Noar;G. Eid;Wayne J. English;N. Tariq;Michael Larsen;S. Jonnalagadda;D. Riff;J. Ponce;D. Early;E. Volckmann;A. Ibele;Matthew D. Spann;K. Krishnan;J. Bucobo;A. Pryor
  • 通讯作者:
    A. Pryor
Petechial hemorrhages of the tympanic membrane in attempted suicide by hanging: A case report
  • DOI:
    10.1016/j.jflm.2012.05.007
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eva Rye Rasmussen;Per Leganger Larsen;Kjeld Andersen;Michael Larsen;Klaus Qvortrup;Hans Petter Hougen
  • 通讯作者:
    Hans Petter Hougen
DIAGNOSTIC VALUE AND COST OF MRCP AND EUS FOR THE EVALUATION OF CHOLEDOCHOLITHIASIS: A RETROSPECTIVE COHORT ANALYSIS
  • DOI:
    10.1016/j.gie.2024.04.1108
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Karena Puldon;Logan Pierce;Patrick Avila;Michael Larsen;Sun-Chuan Dai;Mustafa Arain;Abdul Kouanda
  • 通讯作者:
    Abdul Kouanda
On The Correlation Of Binary M-sequences
  • DOI:
    10.1023/a:1008383811226
  • 发表时间:
    1999-01-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    John Friedlander;Michael Larsen;Daniel Lieman;Igor Shparlinski
  • 通讯作者:
    Igor Shparlinski
Tensor product Markov chains and Weil representations
张量积马尔可夫链与韦伊表示
  • DOI:
    10.1016/j.jalgebra.2025.05.041
  • 发表时间:
    2025-11-15
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Jason Fulman;Michael Larsen;Pham Huu Tiep
  • 通讯作者:
    Pham Huu Tiep

Michael Larsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Larsen', 18)}}的其他基金

Groups and Arithmetic
群与算术
  • 批准号:
    2401098
  • 财政年份:
    2024
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Continuing Grant
RUI: Dynamic Guanidine-based Polymer Networks
RUI:动态胍基聚合物网络
  • 批准号:
    2105149
  • 财政年份:
    2021
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Continuing Grant
Collaborative Research to Explore the Spatial/Temporal Statistical-Physical Structures of Rain in the Vertical Plane
探索垂直平面降雨时空统计物理结构的合作研究
  • 批准号:
    2001490
  • 财政年份:
    2020
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Groups and Arithmetic Geometry
群与算术几何
  • 批准号:
    2001349
  • 财政年份:
    2020
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Developing a Life Sciences Workforce with Strong Quantitative Skills
培养具有强大定量技能的生命科学员工队伍
  • 批准号:
    1742241
  • 财政年份:
    2018
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Collaborative Research: The Relationship of the Spatial/Temporal Variability of Rain to Scaling
合作研究:降雨的时空变化与尺度的关系
  • 批准号:
    1823334
  • 财政年份:
    2018
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Groups and Arithmetic
群与算术
  • 批准号:
    1702152
  • 财政年份:
    2017
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Collaborative Research: The Meteorological Variability of the Two Dimensional/Temporal Structures of Drop Size Distributions and Rain
合作研究:雨滴尺寸分布和降雨的二维/时间结构的气象变化
  • 批准号:
    1532977
  • 财政年份:
    2015
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Continuing Grant
Arithmetic, Groups, and Monodromy
算术、群和单数
  • 批准号:
    1401419
  • 财政年份:
    2014
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterization of the Two-dimensional/Temporal Mosaic of Drop Size Distributions and Spatial Variability (Structure) in Rain
合作研究:雨中液滴尺寸分布和空间变化(结构)的二维/时间镶嵌特征
  • 批准号:
    1230240
  • 财政年份:
    2012
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Continuing Grant

相似海外基金

SHF: Medium: Neurosymbolic Agents for Formal Theorem-Proving
SHF:介质:用于形式定理证明的神经符号代理
  • 批准号:
    2403211
  • 财政年份:
    2024
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Continuing Grant
Development of Nanoscale Viscoelasticity Measurement Method Based on Fluctuation-Dissipation Theorem
基于涨落耗散定理的纳米级粘弹性测量方法的发展
  • 批准号:
    23H02021
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Limit theorem for quantum walks interacting with environment
量子行走与环境相互作用的极限定理
  • 批准号:
    23K03229
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A theorem prover for the correct development of reconfigurable systems
正确开发可重构系统的定理证明者
  • 批准号:
    23K11048
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving Automated Synthetic Geometry Theorem Provers with Deep Learning on Auxiliary Element Construction
通过辅助元素构造的深度学习改进自动综合几何定理证明器
  • 批准号:
    567916-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Quantum channel capacity including quantum entanglement and proof of quantum coding theorem
量子信道容量,包括量子纠缠和量子编码定理证明
  • 批准号:
    22K03406
  • 财政年份:
    2022
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigations in Algebraic Graph Theory (Babai's Theorem)
代数图论研究(巴拜定理)
  • 批准号:
    573691-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.96万
  • 项目类别:
    University Undergraduate Student Research Awards
Repetitions in Words: Branching Out from Dejean's theorem
文字中的重复:德让定理的分支
  • 批准号:
    RGPIN-2021-04084
  • 财政年份:
    2022
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Discovery Grants Program - Individual
Automated Theorem Proving for Infinite Term Rewriting Systems
无限项重写系统的自动定理证明
  • 批准号:
    22K11904
  • 财政年份:
    2022
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Deductive Failure Reasoner with Stepwise Refinement and Theorem Proving
逐步细化和定理证明的演绎失败推理机的开发
  • 批准号:
    22K11987
  • 财政年份:
    2022
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了