Dynamical Systems

动力系统

基本信息

  • 批准号:
    0100538
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-06-01 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

Four projects on the mathematical theory of dynamical systems areproposed. Each project contains a cluster of problems with a common theme. The first pertains to strange attractors with strong dissipation and a single direction of instability. Extensions of a general theory developed under a previous grant to arbitrary phase-dimensions are proposed, as are applications to concrete problems such as nonlinear oscillators. The second project concerns the statistical behavior of dynamical systems with predominantly hyperbolic behavior. The focus ofthe proposed research is on mechanisms leading to various rates of correlation decay in both discrete and continuous times. The topic of the third project is lattice dynamical systems. A systematic analysis of the aggregate behavior of large numbers of dynamical systems coupled together is proposed. The final project proposes dynamical systems methods of solution for three unrelated problems on the Schrodinger operator, kinematic fast dynamo and Navier-Stokes equations.As a branch of mathematics, dynamical systems is concerned with the time evolutions of processes governed by certain underlying laws.A primary goal of the subject is to develop unifying mathematicaltheories to explain observed phenomena and predict future occurrences. In this proposal, the investigation of a number of models amenable to mathematical analysis and with potential applications to the physical and biological sciences is proposed. It has been known for some time that relatively simple laws can lead to complicated dynamics. The first part of this proposal focuses on systems with chaotic behavior. Two topics are proposed: an analysis of strange attractors and a statistical theory of mixing. (Strange attractors are highly complex objects which capture the long term behaviors of dissipative dynamical systems; they have been observed frequently in nature and in simulations but have thus far resisted rigorous analysis.) Other projects proposed include the relations between aggregate properties of large dynamical systems and those of their individual components, and a few problems from physics and hydrodynamics which the principal investigator believes can be solved by the methods of dynamical systems.Four projects on the mathematical theory of dynamical systems areproposed. Each project contains a cluster of problems with a common theme. The first pertains to strange attractors with strong dissipation and a single direction of instability. Extensions of a general theory developed under a previous grant to arbitrary phase-dimensions are proposed, as are applications to concrete problems such as nonlinear oscillators. The second project concerns the statistical behavior of dynamical systems with predominantly hyperbolic behavior. The focus ofthe proposed research is on mechanisms leading to various rates of correlation decay in both discrete and continuous times. The topic of the third project is lattice dynamical systems. A systematic analysis of the aggregate behavior of large numbers of dynamical systems coupled together is proposed. The final project proposes dynamical systems methods of solution for three unrelated problems on the Schrodinger operator, kinematic fast dynamo and Navier-Stokes equations.As a branch of mathematics, dynamical systems is concerned with the time evolutions of processes governed by certain underlying laws.A primary goal of the subject is to develop unifying mathematicaltheories to explain observed phenomena and predict future occurrences. In this proposal, the investigation of a number of models amenable to mathematical analysis and with potential applications to the physical and biological sciences is proposed. It has been known for some time that relatively simple laws can lead to complicated dynamics. The first part of this proposal focuses on systems with chaotic behavior. Two topics are proposed: an analysis of strange attractors and a statistical theory of mixing. (Strange attractors are highly complex objects which capture the long term behaviors of dissipative dynamical systems; they have been observed frequently in nature and in simulations but have thus far resisted rigorous analysis.) Other projects proposed include the relations between aggregate properties of large dynamical systems and those of their individual components, and a few problems from physics and hydrodynamics which the principal investigator believes can be solved by the methods of dynamical systems.
提出了动力系统数学理论的四个方案。每个项目都包含一组具有共同主题的问题。第一种是具有强耗散和单方向不稳定性的奇异吸引子。根据以前的补助金开发的一般理论的扩展到任意相尺寸的建议,是具体的问题,如非线性振荡器的应用。第二个项目涉及的统计行为的动力系统与占主导地位的双曲行为。拟议研究的重点是导致离散和连续时间内不同相关性衰减率的机制。第三个项目的主题是晶格动力系统。本文提出了一种系统地分析大量耦合在一起的动力系统的聚集行为的方法。期末计画提出动力系统方法来解决薛定谔算子、运动快速发电机和Navier-Stokes方程三个不相关的问题。作为数学的一个分支,动力系统是研究受某些基本定律支配的过程的时间演化。本学科的主要目标是发展统一的理论来解释观测到的现象和预测未来的事件。在这一建议中,提出了一些模型的调查服从数学分析,并与潜在的应用物理和生物科学。一段时间以来,人们已经知道相对简单的定律可能会导致复杂的动力学。该提案的第一部分侧重于具有混沌行为的系统。提出了两个主题:奇怪吸引子的分析和混合的统计理论。(奇异吸引子是捕捉耗散动力学系统长期行为的高度复杂的对象;它们在自然界和模拟中经常被观察到,但迄今为止一直无法进行严格的分析。提出的其他项目包括大型动力系统的集合性质与其单个组成部分的集合性质之间的关系,以及主要研究者认为可以用动力系统方法解决的物理学和流体力学中的一些问题。每个项目都包含一组具有共同主题的问题。第一种是具有强耗散和单方向不稳定性的奇异吸引子。根据以前的补助金开发的一般理论的扩展到任意相尺寸的建议,是具体的问题,如非线性振荡器的应用。第二个项目涉及的统计行为的动力系统与占主导地位的双曲行为。建议的研究重点是在离散和连续时间的相关性衰减的各种速率的机制。第三个项目的主题是晶格动力系统。本文提出了一种系统地分析大量耦合在一起的动力系统的聚集行为的方法。期末计画提出动力系统方法来解决薛定谔算子、运动快速发电机和Navier-Stokes方程三个不相关的问题。作为数学的一个分支,动力系统是研究受某些基本定律支配的过程的时间演化。本学科的主要目标是发展统一的理论来解释观测到的现象和预测未来的事件。在这一建议中,提出了一些模型的调查服从数学分析,并与潜在的应用物理和生物科学。一段时间以来,人们已经知道,相对简单的定律可以导致复杂的动力学。该提案的第一部分侧重于具有混沌行为的系统。提出了两个主题:奇怪吸引子的分析和混合的统计理论。(奇异吸引子是捕捉耗散动力学系统长期行为的高度复杂的对象;它们在自然界和模拟中经常被观察到,但迄今为止一直无法进行严格的分析。提出的其他项目包括大型动力系统的总体性质与其各个组成部分之间的关系,以及主要研究者认为可以通过动力系统方法解决的物理学和流体力学的一些问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lai-Sang Young其他文献

Extended Systems with Deterministic Local Dynamics and Random Jumps

Lai-Sang Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lai-Sang Young', 18)}}的其他基金

Dynamical Systems with a View towards Applications
着眼于应用的动力系统
  • 批准号:
    2350184
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Dynamical Systems: Connecting Theory to Applications
动力系统:理论与应用的结合
  • 批准号:
    1901009
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Frontiers in Dynamical Systems
动力系统前沿
  • 批准号:
    1363161
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Dynamical Systems: from Theory to Applications
动力系统:从理论到应用
  • 批准号:
    1101594
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Dynamical Systems: Theory and Applications
动力系统:理论与应用
  • 批准号:
    0600974
  • 财政年份:
    2006
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Some Studies On Non-Uniformly Hyperbolic Attractors and the N-Body Problem
非均匀双曲吸引子与N体问题的一些研究
  • 批准号:
    9970673
  • 财政年份:
    1999
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Dynamical Systems and Smooth Ergodic Theory
动力系统和平滑遍历理论
  • 批准号:
    9803150
  • 财政年份:
    1998
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dynamical Systems Conference
数学科学:动力系统会议
  • 批准号:
    9531653
  • 财政年份:
    1996
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
FAW: Mathematical Sciences: Chaotic Dynamics
一汽:数学科学:混沌动力学
  • 批准号:
    9696200
  • 财政年份:
    1996
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dynamical and Related Topics
数学科学:动力学及相关主题
  • 批准号:
    9504863
  • 财政年份:
    1995
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
  • 批准号:
    2349508
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2342407
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
  • 批准号:
    2337942
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Dynamical Systems with a View towards Applications
着眼于应用的动力系统
  • 批准号:
    2350184
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Conference: Dynamical Systems and Fractal Geometry
会议:动力系统和分形几何
  • 批准号:
    2402022
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Making Upper Division Mathematics Courses More Relevant for Future High School Teachers: The Case of Inquiry-Oriented Dynamical Systems and Modeling
使高年级数学课程与未来高中教师更相关:以探究为导向的动力系统和建模案例
  • 批准号:
    2337047
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了