Frontiers in Dynamical Systems

动力系统前沿

基本信息

  • 批准号:
    1363161
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Dynamical systems is a branch of modern mathematics concerned with time evolutions of natural and iterative processes. It is both an area of pure mathematics and a subject that lies at the crossroads of multiple scientific disciplines. As an area of pure mathematics, it seeks to develop rigorous theories and techniques that are applicable to general processes, addressing foundational issues of stability and chaos. As a partner with the sciences, it offers qualitative theories and viewpoints, and can be a powerful tool when used in conjunction with numerical computations. While both aspects of dynamical systems are worthy in their own right, there often is a gap that lies between theory and applications. The proposed research has both purely theoretical and application oriented components, one of its goals being the cross-fertilization of ideas. This research will: (1) lead to significant broadening of the scope of dynamical systems theory, (2) strengthen connections between dynamical systems and other areas of mathematics, such as probability and partial differential equations, and (3) build connections between mathematics and statistical physics and theoretical neuroscience. In this proposal there are four specific research projects are presented. One proposes to extend hyperbolic theory (or the theory of chaotic dynamical systems) from finite to infinite dimensions, so that an enlarged theory will be applicable not just to ordinary differential equations but also to large classes of partial differential equations. A second project proposes to extend current techniques for analyzing chaotic dynamics, which often exhibit Gaussian type fluctuations, to systems that produce heavy-tailed statistics. Though well recognized as a hallmark of complex processes, few analytical studies of such dynamical processes have been carried out. A third project seeks to provide rigorous justification for certain fundamental phenomenology in nonequilibrium statistical mechanics, such as the idea of local thermal equilibrium in steady states dynamics. The fourth and final project proposes numerical and analytical studies of phenomena identified in previous computational models of neuroscience, specifically in models of visual cortex. Providing scientific training for young researchers is a very important part of the proposed activity. The principal investigator has a strong and well documented history of mentoring students and junior colleagues, and she fully expects to continue to do so using projects in the current grant.
动力系统是现代数学的一个分支,研究自然过程和迭代过程的时间演化。它既是纯数学的一个领域,也是多个科学学科交叉的一个学科。作为纯数学的一个领域,它旨在发展适用于一般过程的严格理论和技术,解决稳定性和混沌的基本问题。作为科学的合作伙伴,它提供了定性的理论和观点,当与数值计算结合使用时,它可以成为一个强大的工具。虽然动力系统的这两个方面本身都有价值,但理论和应用之间往往存在差距。拟议的研究既有纯理论和面向应用的组件,其目标之一是思想的交叉施肥。这项研究将:(1)导致动力系统理论的范围显着扩大,(2)加强动力系统和其他数学领域之间的联系,如概率和偏微分方程,(3)建立数学与统计物理和理论神经科学之间的联系。在这个建议中有四个具体的研究项目。有人建议将双曲理论(或混沌动力系统理论)从有限维扩展到无限维,这样扩展后的理论不仅适用于常微分方程,而且适用于大类偏微分方程。第二个项目建议扩展目前的技术,用于分析混沌动力学,这往往表现出高斯型波动,系统产生重尾统计。虽然公认为复杂过程的一个标志,这种动态过程的分析研究很少进行。第三个项目试图为非平衡统计力学中的某些基本现象学提供严格的理由,例如稳态动力学中的局部热平衡思想。第四个也是最后一个项目提出了在以前的神经科学计算模型,特别是在视觉皮层模型中识别的现象的数值和分析研究。为青年研究人员提供科学培训是拟议活动的一个非常重要的部分。首席研究员有一个强大的和有据可查的指导学生和初级同事的历史,她完全希望继续这样做,使用项目在目前的赠款。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lai-Sang Young其他文献

Extended Systems with Deterministic Local Dynamics and Random Jumps

Lai-Sang Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lai-Sang Young', 18)}}的其他基金

Dynamical Systems with a View towards Applications
着眼于应用的动力系统
  • 批准号:
    2350184
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Dynamical Systems: Connecting Theory to Applications
动力系统:理论与应用的结合
  • 批准号:
    1901009
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Dynamical Systems: from Theory to Applications
动力系统:从理论到应用
  • 批准号:
    1101594
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Dynamical Systems: Theory and Applications
动力系统:理论与应用
  • 批准号:
    0600974
  • 财政年份:
    2006
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Dynamical Systems
动力系统
  • 批准号:
    0100538
  • 财政年份:
    2001
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Some Studies On Non-Uniformly Hyperbolic Attractors and the N-Body Problem
非均匀双曲吸引子与N体问题的一些研究
  • 批准号:
    9970673
  • 财政年份:
    1999
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Dynamical Systems and Smooth Ergodic Theory
动力系统和平滑遍历理论
  • 批准号:
    9803150
  • 财政年份:
    1998
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dynamical Systems Conference
数学科学:动力系统会议
  • 批准号:
    9531653
  • 财政年份:
    1996
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
FAW: Mathematical Sciences: Chaotic Dynamics
一汽:数学科学:混沌动力学
  • 批准号:
    9696200
  • 财政年份:
    1996
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dynamical and Related Topics
数学科学:动力学及相关主题
  • 批准号:
    9504863
  • 财政年份:
    1995
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
  • 批准号:
    2349508
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2342407
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
  • 批准号:
    2337942
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Dynamical Systems with a View towards Applications
着眼于应用的动力系统
  • 批准号:
    2350184
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Conference: Dynamical Systems and Fractal Geometry
会议:动力系统和分形几何
  • 批准号:
    2402022
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Making Upper Division Mathematics Courses More Relevant for Future High School Teachers: The Case of Inquiry-Oriented Dynamical Systems and Modeling
使高年级数学课程与未来高中教师更相关:以探究为导向的动力系统和建模案例
  • 批准号:
    2337047
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了