Hamiltonian Motions Under Strong Constrains
强约束下的哈密顿运动
基本信息
- 批准号:0101969
- 负责人:
- 金额:$ 7.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project focuses on Hamiltonian ODEs and PDEs under strong constrainingforces. For an given Hamiltonian composed of the kinetic energy and apotential energy, consider particles restricted to a submanifold(independent of time) in the configuration space, i.e. a holonomicconstraint. The idealization of the constrained particles' motion isgoverned by a Hamiltonian system defined on the tangent bundle of thissubmanifold involving geometric notions. In physics, an alternative way torealize the constraint is to consider the system in the original spacewith an extra strong potential which penalizes the distance to theconstraining submanifold. This idea applies to both Hamiltonian ODEs andPDEs. While the convergence of the motions under strong constrainingpotentials to the limit geometric Hamiltonian motions on finite timeintervals has been studied for ODEs, the problem in PDEs is basicallyuntouched. The project focuses on two questions. The first is theconvergence of the strongly penalized motions, both on finite and infinitetime intervals. The second question is the relation between the dynamics ofthe strongly penalized motions and their limits, i.e. the structuralstability under strong constraining forces. The subjects are stability,periodic motions, homoclinic motions, resonances, etc. The problem can alsobe viewed as homogenization or elliptic type singular perturbations.The problem of motions of particles restricted to submanifolds in theconfiguration space appears naturally in both classical mechanics andPDEs. For example, in classical mechanics, whenever a rigid rod isconsidered as elastic with a large elastic coefficient, the problem fallsin this category. Also, it is found, in material science, that someanti-ferromagnetic systems converges to geometric wave equationstargeted on the unit 2-dimensional sphere formally. Therefore, it isimportant to study how the constrained motions converge. Moreover, as thepenalized motions have high frequency oscillations, it is even moreimportant to investigate the relation between the asymptotic qualitativebehaviors.
项目重点研究强约束条件下的哈密顿ode和偏微分方程。对于给定的由动能和势能组成的哈密顿量,考虑粒子在位形空间中受限于子流形(与时间无关),即完整约束。约束粒子运动的理想化是由定义在这个包含几何概念的子流形的切线束上的哈密顿系统控制的。在物理学中,实现约束的另一种方法是考虑原始空间中的系统,该系统具有一个额外的强势,该势会惩罚到约束子流形的距离。这个想法适用于哈密顿ode和偏微分方程。虽然已经研究了在强约束势作用下运动在有限时间区间收敛到极限几何哈密顿运动的问题,但偏微分方程中的问题基本没有触及。该项目主要关注两个问题。第一个是强惩罚运动在有限和无限时间间隔上的收敛性。第二个问题是强惩罚运动的动力学与它们的极限之间的关系,即在强约束力下的结构稳定性。主题有稳定性、周期运动、同斜运动、共振等。这个问题也可以看作是均匀化或椭圆型奇异摄动。粒子在位形空间中限于子流形的运动问题在经典力学和偏微分方程中都是自然出现的。例如,在经典力学中,只要把一根刚性杆看作弹性系数大的弹性杆,问题就属于这一类。在材料科学中,也发现一些反铁磁系统在形式上收敛于以单位二维球面为目标的几何波动方程。因此,研究约束运动如何收敛是非常重要的。此外,由于惩罚运动具有高频振荡,因此研究渐近定性行为之间的关系更为重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chongchun Zeng其他文献
Concentrated steady vorticities of the Euler equation on 2-d domains and their linear stability
二维域上欧拉方程的集中稳态涡量及其线性稳定性
- DOI:
10.1016/j.jde.2018.11.011 - 发表时间:
2018-09 - 期刊:
- 影响因子:2.4
- 作者:
Yiming Long;Yuchen Wang;Chongchun Zeng - 通讯作者:
Chongchun Zeng
On the Spectra of the Gravity Water Waves Linearized at Monotone Shear Flows
- DOI:
10.1007/s00220-024-05219-9 - 发表时间:
2025-01-16 - 期刊:
- 影响因子:2.600
- 作者:
Xiao Liu;Chongchun Zeng - 通讯作者:
Chongchun Zeng
Stability of Traveling Waves of Nonlinear Schr?dinger Equation with Nonzero Condition at Infinity
无穷远非零条件非线性薛定谔方程行波的稳定性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2.5
- 作者:
Zhiwu Lin;Zhengping Wang;Chongchun Zeng - 通讯作者:
Chongchun Zeng
On small breathers of nonlinear Klein-Gordon equations via exponentially small homoclinic splitting
- DOI:
10.1007/s00222-025-01327-y - 发表时间:
2025-02-20 - 期刊:
- 影响因子:3.600
- 作者:
Otávio M. L. Gomide;Marcel Guardia;Tere M. Seara;Chongchun Zeng - 通讯作者:
Chongchun Zeng
Solutions of the generalized Lennard-Jones system
广义 Lennard-Jones 系统的解
- DOI:
10.1007/s10114-017-7139-6 - 发表时间:
2017-11 - 期刊:
- 影响因子:0.7
- 作者:
Bowen Liu;Yiming Long;Chongchun Zeng - 通讯作者:
Chongchun Zeng
Chongchun Zeng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chongchun Zeng', 18)}}的其他基金
Dynamics of Fluid and Nonlinear Waves
流体动力学和非线性波
- 批准号:
1900083 - 财政年份:2019
- 资助金额:
$ 7.03万 - 项目类别:
Continuing Grant
Dynamics of inviscid fluids and nonlinear waves
无粘流体动力学和非线性波
- 批准号:
1362507 - 财政年份:2014
- 资助金额:
$ 7.03万 - 项目类别:
Continuing Grant
The Isentropic Euler Equations and Optimal Transport
等熵欧拉方程和最优输运
- 批准号:
1101423 - 财政年份:2011
- 资助金额:
$ 7.03万 - 项目类别:
Standard Grant
Interface problems in fluids and nonlinear waves
流体和非线性波中的界面问题
- 批准号:
0801319 - 财政年份:2008
- 资助金额:
$ 7.03万 - 项目类别:
Standard Grant
CAREER: Perturbation Problems in PDE Dynamics
职业:偏微分方程动力学中的扰动问题
- 批准号:
0627842 - 财政年份:2006
- 资助金额:
$ 7.03万 - 项目类别:
Continuing Grant
CAREER: Perturbation Problems in PDE Dynamics
职业:偏微分方程动力学中的扰动问题
- 批准号:
0239389 - 财政年份:2003
- 资助金额:
$ 7.03万 - 项目类别:
Continuing Grant
相似海外基金
Evaluation of collapse resistance performance of entire bridge systems under mega-earthquake ground motions exceeding the design basis
超设计基准特大地震地震动作用下整个桥梁系统抗倒塌性能评价
- 批准号:
20K04674 - 财政年份:2020
- 资助金额:
$ 7.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RE-EVALUATION OF LIMIT STATES CONSIDERING RESPONSE UNDER EXTREME GROUND MOTIONS AND DAMAGE CONTROL DESIGN FOR BRIDGES WITH ISOLATORS AND DAMPERS
考虑极端地面运动响应的极限状态的重新评估以及带有隔离器和阻尼器的桥梁的损伤控制设计
- 批准号:
19K04568 - 财政年份:2019
- 资助金额:
$ 7.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vehicle passage risk due to progressive destruction of abutment approach under multi consecutive strong motions
多次连续强烈运动下桥台逐渐破坏导致车辆通行风险
- 批准号:
18K04332 - 财政年份:2018
- 资助金额:
$ 7.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collapse mechanism of steel moment frames with columns under high axial load subjected to bi-directional ground motions
双向地震动作用下高轴向荷载柱钢框架倒塌机理
- 批准号:
17H04944 - 财政年份:2017
- 资助金额:
$ 7.03万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Successive data assimilation for the mathematical model of ship motions in waves under navigation
船舶航行波浪运动数学模型的逐次数据同化
- 批准号:
25289328 - 财政年份:2013
- 资助金额:
$ 7.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fundamental study of functionality evaluation of base-isolated buildings under vertical motions
竖向运动下基础隔震建筑功能评价基础研究
- 批准号:
24860010 - 财政年份:2012
- 资助金额:
$ 7.03万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Mathematical studies on fluid motions under certain conditions
特定条件下流体运动的数学研究
- 批准号:
18340030 - 财政年份:2006
- 资助金额:
$ 7.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Establishment of Prediction on Unstable Ship Motions under Extreme Sea States
极端海况下船舶不稳定运动预测的建立
- 批准号:
13555270 - 财政年份:2001
- 资助金额:
$ 7.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Study on Vibration Control of Structures and Equipments, Piping Systems in a Building under Severe Earthquake Ground Motions
强震地震动下建筑物结构及设备、管道系统振动控制研究
- 批准号:
10450206 - 财政年份:1998
- 资助金额:
$ 7.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on real-time estimation method of earthquake ground motions under imperfect information
不完善信息下地震地震动实时估计方法研究
- 批准号:
09680448 - 财政年份:1997
- 资助金额:
$ 7.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)