Collaborative Research: Mathematical Studies of Short-Ranged Spin Glasses
合作研究:短程自旋玻璃的数学研究
基本信息
- 批准号:0102587
- 负责人:
- 金额:$ 30.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NSF Award Abstract - DMS-0102587 Mathematical Sciences: Collaborative Research: Mathematical Studies of Short-Ranged Spin Glasses Abstract DMS-0102587 Newman The work under this grant addresses the mathematical foundations of the theory of disordered magnets known as spin glasses. Although there exist proposed solutions of idealized (and unrealistic) spin glass models, the principal investigators' interests center on answering fundamental statistical mechanical questions that bear on the behavior of real laboratory spin glasses. These questions, many of which remain controversial despite two decades of intensive study, include the nature of ordering in the equilibrium spin glass phase, understanding anomalous behavior, such as slow relaxation and aging arising from nonequilibrium dynamics, and proving the presence or absence of a phase transition in finite dimensions. The methods used and concepts introduced should be relevant not only for spin glasses but also for other disordered systems, many of which remain poorly understood. Moreover, the generality of the principal investigators' approach to dynamics should yield progress in certain aspects of nonequilibrium dynamics in both homogeneous and disordered systems.Our deep physical and mathematical understanding of ordered systems in the solid and liquid state --- for example, crystals, ferromagnets, superconductors, liquid crystals, and many others --- has been both of fundamental scientific importance and has spurred profound technological change throughout the second half of the last century. However, there exist many systems, both familiar and unfamiliar, in which randomness or disorder plays a key role, and in which our mathematical and physical understanding remains comparatively primitive. One familiar example is ordinary window glass, where the atoms or molecules are "stuck" in random locations (as opposed to a regular crystalline array as would be found, for example, in ice). Spin glasses are disordered magnetic systems which are thought to be prototypes for this kind of macroscopic "frozen-in" disorder. Disordered systems in general present both fundamental scientific challenges and at the same time hold great promise for applications. The latter includes not only the possibility of new materials and devices but also the creation of new algorithms and applications to the biological and other sciences. Progress in understanding these systems is therefore greatly desirable. Spin glasses may be more amenable to mathematical analysis than other materials in this class. Nevertheless, little fundamental progress has been made even here. The principal investigators' work is aimed at resolving basic mathematical and physical issues concerning these materials and at providing a general theoretical approach for a wide variety of disordered systems.
NSF奖摘要- DMS-0102587数学科学:合作研究:短程自旋玻璃的数学研究摘要DMS-0102587纽曼在此资助下的工作涉及称为自旋玻璃的无序磁体理论的数学基础。 虽然存在理想化(和不现实的)自旋玻璃模型的解决方案,主要研究人员的兴趣集中在回答基本的统计力学问题,承担的行为真实的实验室自旋玻璃。 这些问题,其中许多仍然存在争议,尽管二十年的深入研究,包括在平衡自旋玻璃相的有序性,理解异常行为,如缓慢松弛和老化引起的非平衡动力学,并证明存在或不存在的相变在有限的尺寸。 所使用的方法和引入的概念应该不仅与自旋玻璃有关,而且与其他无序系统有关,其中许多系统仍然知之甚少。 此外,主要研究人员对动力学的研究方法的普遍性应该会在均匀和无序系统中的非平衡动力学的某些方面取得进展。我们对固态和液态有序系统的深刻物理和数学理解-例如,晶体,铁磁体,超导体,液晶,和许多其他的-都具有基本的科学重要性,并在上个世纪的后半叶激发了深刻的技术变革。 然而,存在着许多系统,无论是熟悉的还是不熟悉的,其中随机性或无序性起着关键作用,而我们的数学和物理理解仍然相对原始。 一个熟悉的例子是普通的窗户玻璃,其中的原子或分子被“粘”在随机的位置(与在冰中发现的规则的晶体阵列相反)。 自旋玻璃是无序的磁性系统,被认为是这种宏观“冻结”无序的原型。一般来说,无序系统既提出了基本的科学挑战,同时又有很大的应用前景。 后者不仅包括新材料和新设备的可能性,还包括新算法的创建和在生物科学和其他科学中的应用。 因此,非常需要在理解这些系统方面取得进展。 自旋玻璃可能比这类材料更适合数学分析。 然而,即使在这方面也没有取得什么根本性的进展。 主要研究人员的工作旨在解决有关这些材料的基本数学和物理问题,并为各种无序系统提供一般的理论方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Newman其他文献
Cleaning and Sterilization of Used Cardiac Implantable Electronic Devices With Process Validation
通过流程验证对用过的心脏植入电子设备进行清洁和灭菌
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Thomas C. Crawford;Craig Allmendinger;Jay Snell;Kevin Weatherwax;Balasundaram Lavan;T. Baman;Patricia Sovitch;Daniel Alyesh;Thomas Carrigan;Noah Klugman;Denis Kune;Andrew B Hughey;Daniel Lautenbach;Nathan Sovitch;Karman Tandon;George Samson;Charles Newman;Sheldon Davis;Archie Brown;Brad Wasserman;Edward B Goldman;S. Arlinghaus;Hakan Oral;Kim A. Eagle - 通讯作者:
Kim A. Eagle
What can the Defence Medical Services learn from the COVID-19 pandemic in order to be ready for the future?
国防医疗服务部门可以从 COVID-19 大流行中学到什么,以便为未来做好准备?
- DOI:
10.1136/military-2022-002205 - 发表时间:
2022 - 期刊:
- 影响因子:1.5
- 作者:
Charles Newman - 通讯作者:
Charles Newman
Charles Newman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Newman', 18)}}的其他基金
Particle Systems, Percolation, and Scaling Limits
粒子系统、渗透和缩放限制
- 批准号:
1507019 - 财政年份:2015
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
Pan American Advanced Studies Institute on Topics in Percolative and Disordered Systems; Argentina and Chile; January 1-15, 2012
泛美渗透和无序系统高级研究所;
- 批准号:
1036424 - 财政年份:2011
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Particle Systems and Scaling Limits in Two (and More) Dimensions
二维(及更多)维度的粒子系统和缩放限制
- 批准号:
1007524 - 财政年份:2010
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
Near-critical two-dimensional random systems
近临界二维随机系统
- 批准号:
1007626 - 财政年份:2010
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
PIRE: Percolative and Disordered Systems: A U.S.- Brazil-Netherlands Based International Collaboration
PIRE:渗透和无序系统:美国-巴西-荷兰的国际合作
- 批准号:
0730136 - 财政年份:2008
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
Mathematical Studies of Short-Ranged Spin Glasses
短程自旋玻璃的数学研究
- 批准号:
0604869 - 财政年份:2006
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
Establishing a Chemical Laboratory Technician Program at Mt. San Antonio College
在圣安东尼奥山学院建立化学实验室技术员计划
- 批准号:
0302944 - 财政年份:2003
- 资助金额:
$ 30.2万 - 项目类别:
Continuing grant
Topics in Percolation and Particle Models
渗流和粒子模型主题
- 批准号:
0104278 - 财政年份:2001
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
Topics in Percolationand Particle Models
渗流和粒子模型主题
- 批准号:
9803267 - 财政年份:1998
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317570 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317572 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317569 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317571 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401258 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: Supporting Pre-Service Teachers Mathematical Discourse through Co-Design of Teaching Simulation Tools
协作研究:通过教学模拟工具的共同设计支持职前教师的数学话语
- 批准号:
2315437 - 财政年份:2023
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant