Near-critical two-dimensional random systems

近临界二维随机系统

基本信息

  • 批准号:
    1007626
  • 负责人:
  • 金额:
    $ 10.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-15 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

This project studies random spatial systems, such as percolation or the Ising model of ferromagnetism. These models all exhibit the statistical physics phenomenon of a phase transition, their macroscopic behavior changing drastically as one parameter varies: there is a sharp transition for a particular critical value of this parameter. At the critical point exactly, random macroscopic - most often fractal - geometries arise, and in two dimensions these geometries are widely believed to possess a strong property of conformal invariance. The mathematical understanding of these models has considerably improved over the last ten years following breakthroughs of Lawler, Schramm, Smirnov and Werner, in particular thanks to the conformally invariant Schramm-Loewner-Evolution process of stochastic growth in the plane. This project addresses questions related to the behavior of these models at and near criticality, as well as related "self-critical" systems - forest-fire models for instance - where a phase transition intrisically appears without any fine-tuning of a parameter. The area of probability theory studied here overlaps combinatorics and complex analysis, and it also uses ideas and techniques from statistical mechanics.Random shapes, such as rough interfaces created by welding two metals, or irregular sea coasts fashioned by erosion, are omnipresent in nature. These shapes usually display a fractal behavior, and an increasingly important part of probability theory is devoted to studying such models where spatial randomness plays a central role. This leads to deep and fascinating mathematical questions, in particular surprising "universality" properties arise: for instance, similar shapes appear in situations that are, at first sight, completely unrelated, based on totally different physical, chemical or biological mechanisms. A better mathematical understanding of simplified models would provide new insight on more complex models used in applications.
这个项目研究随机空间系统,如渗流或铁磁性的伊辛模型。这些模型都表现出相变的统计物理现象,它们的宏观行为随着一个参数的变化而急剧变化:对于该参数的特定临界值,存在急剧的转变。在临界点上,随机宏观-最常见的分形-几何出现,在二维这些几何被广泛认为具有很强的共形不变性。这些模型的数学理解有很大的改善,在过去十年的突破劳勒,施拉姆,斯米尔诺夫和维尔纳,特别是由于共形不变Schramm-Loewner演化过程中的随机增长的平面。该项目解决了与这些模型在临界和接近临界时的行为相关的问题,以及相关的“自临界”系统-例如森林火灾模型-其中相变在没有任何参数微调的情况下出现。这里研究的概率论领域与组合学和复分析重叠,它也使用统计力学的思想和技术。随机形状,如两种金属焊接产生的粗糙界面,或侵蚀形成的不规则海岸,在自然界中无处不在。这些形状通常表现出分形行为,概率论中越来越重要的一部分致力于研究空间随机性起核心作用的模型。这导致了深刻而迷人的数学问题,特别是令人惊讶的“普遍性”属性出现:例如,相似的形状出现在乍一看完全无关的情况下,基于完全不同的物理,化学或生物机制。对简化模型的更好的数学理解将为应用程序中使用的更复杂的模型提供新的见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Newman其他文献

Cleaning and Sterilization of Used Cardiac Implantable Electronic Devices With Process Validation
通过流程验证对用过的心脏植入电子设备进行清洁和灭菌
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas C. Crawford;Craig Allmendinger;Jay Snell;Kevin Weatherwax;Balasundaram Lavan;T. Baman;Patricia Sovitch;Daniel Alyesh;Thomas Carrigan;Noah Klugman;Denis Kune;Andrew B Hughey;Daniel Lautenbach;Nathan Sovitch;Karman Tandon;George Samson;Charles Newman;Sheldon Davis;Archie Brown;Brad Wasserman;Edward B Goldman;S. Arlinghaus;Hakan Oral;Kim A. Eagle
  • 通讯作者:
    Kim A. Eagle
What can the Defence Medical Services learn from the COVID-19 pandemic in order to be ready for the future?
国防医疗服务部门可以从 COVID-19 大流行中学到什么,以便为未来做好准备?
  • DOI:
    10.1136/military-2022-002205
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Charles Newman
  • 通讯作者:
    Charles Newman

Charles Newman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Newman', 18)}}的其他基金

Particle Systems, Percolation, and Scaling Limits
粒子系统、渗透和缩放限制
  • 批准号:
    1507019
  • 财政年份:
    2015
  • 资助金额:
    $ 10.42万
  • 项目类别:
    Continuing Grant
Pan American Advanced Studies Institute on Topics in Percolative and Disordered Systems; Argentina and Chile; January 1-15, 2012
泛美渗透和无序系统高级研究所;
  • 批准号:
    1036424
  • 财政年份:
    2011
  • 资助金额:
    $ 10.42万
  • 项目类别:
    Standard Grant
Particle Systems and Scaling Limits in Two (and More) Dimensions
二维(及更多)维度的粒子系统和缩放限制
  • 批准号:
    1007524
  • 财政年份:
    2010
  • 资助金额:
    $ 10.42万
  • 项目类别:
    Continuing Grant
PIRE: Percolative and Disordered Systems: A U.S.- Brazil-Netherlands Based International Collaboration
PIRE:渗透和无序系统:美国-巴西-荷兰的国际合作
  • 批准号:
    0730136
  • 财政年份:
    2008
  • 资助金额:
    $ 10.42万
  • 项目类别:
    Continuing Grant
Topics in Percolation & Particle Models
渗透主题
  • 批准号:
    0606696
  • 财政年份:
    2006
  • 资助金额:
    $ 10.42万
  • 项目类别:
    Continuing Grant
Mathematical Studies of Short-Ranged Spin Glasses
短程自旋玻璃的数学研究
  • 批准号:
    0604869
  • 财政年份:
    2006
  • 资助金额:
    $ 10.42万
  • 项目类别:
    Continuing Grant
Establishing a Chemical Laboratory Technician Program at Mt. San Antonio College
在圣安东尼奥山学院建立化学实验室技术员计划
  • 批准号:
    0302944
  • 财政年份:
    2003
  • 资助金额:
    $ 10.42万
  • 项目类别:
    Continuing grant
Collaborative Research: Mathematical Studies of Short-Ranged Spin Glasses
合作研究:短程自旋玻璃的数学研究
  • 批准号:
    0102587
  • 财政年份:
    2001
  • 资助金额:
    $ 10.42万
  • 项目类别:
    Continuing Grant
Topics in Percolation and Particle Models
渗流和粒子模型主题
  • 批准号:
    0104278
  • 财政年份:
    2001
  • 资助金额:
    $ 10.42万
  • 项目类别:
    Continuing Grant
Topics in Percolationand Particle Models
渗流和粒子模型主题
  • 批准号:
    9803267
  • 财政年份:
    1998
  • 资助金额:
    $ 10.42万
  • 项目类别:
    Standard Grant

相似国自然基金

堆垒基与Narkiewicz常数的研究
  • 批准号:
    11226279
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Pacemakers of Cholinergic Wave Activity in the Developing Retina
视网膜发育中胆碱能波活动的起搏器
  • 批准号:
    10653330
  • 财政年份:
    2023
  • 资助金额:
    $ 10.42万
  • 项目类别:
Leveraging Spatial Location for Single-Cell Molecular and Morphological Characterization
利用空间定位进行单细胞分子和形态学表征
  • 批准号:
    10534272
  • 财政年份:
    2023
  • 资助金额:
    $ 10.42万
  • 项目类别:
Synapse Engulfment by Oligodendrocyte Precursor Cells: A New Mechanism of Circuit Refinement in the Developing Brain
少突胶质细胞前体细胞突触吞噬:发育中大脑中电路细化的新机制
  • 批准号:
    10637731
  • 财政年份:
    2023
  • 资助金额:
    $ 10.42万
  • 项目类别:
Cortical basis of binocular depth perception
双目深度知觉的皮质基础
  • 批准号:
    10681944
  • 财政年份:
    2023
  • 资助金额:
    $ 10.42万
  • 项目类别:
Mission Empower
使命赋能
  • 批准号:
    10693461
  • 财政年份:
    2023
  • 资助金额:
    $ 10.42万
  • 项目类别:
Biocarpet: The Next Generation Endovascular Device for Peripheral Arterial Disease
Biocarpet:治疗外周动脉疾病的下一代血管内装置
  • 批准号:
    10744597
  • 财政年份:
    2023
  • 资助金额:
    $ 10.42万
  • 项目类别:
Role of local interneurons in early cortical dysfunction in Shank3 KO mice
局部中间神经元在 Shank3 KO 小鼠早期皮质功能障碍中的作用
  • 批准号:
    10741946
  • 财政年份:
    2023
  • 资助金额:
    $ 10.42万
  • 项目类别:
Investigating the effects of olfactory critical period odorant exposure on the trace amine-associated receptor4 olfactory circuit
研究嗅觉关键期气味暴露对痕量胺相关受体4嗅觉回路的影响
  • 批准号:
    10749403
  • 财政年份:
    2023
  • 资助金额:
    $ 10.42万
  • 项目类别:
Neuronal circuit modulation by myelination in the mammalian visual cortex
哺乳动物视觉皮层髓鞘形成对神经​​元回路的调节
  • 批准号:
    10632809
  • 财政年份:
    2023
  • 资助金额:
    $ 10.42万
  • 项目类别:
Development and plasticity of stimulus processing in the visual cortex
视觉皮层刺激处理的发展和可塑性
  • 批准号:
    10572887
  • 财政年份:
    2023
  • 资助金额:
    $ 10.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了