Topics in Percolation & Particle Models
渗透主题
基本信息
- 批准号:0606696
- 负责人:
- 金额:$ 24.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-05-15 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project comprises studies that seek to answer basic questions arising in two areas of Probability Theory, Interacting Particle Systems andPercolation. They include the construction and applicationof nucleation processestaking place at the touching points of forward and backwardpaths in the (double) Brownian web and the conceptually relatedmarking process on the ``double points'' of the (critical) continuumnonsimple loop process. This loop process, constructed by the PIand Federico Camia based on the Schramm-Loewner evolution (SLE)and the work of Schramm and Smirnov, is the full scaling limitfor two-dimensional critical percolation. The double points,where the loops touch themselves and each other, represent thescaling limits of lattice sites where a change in microscopic statehas a macroscopic effect on connectivity.There are many situations, such as the functioning of the Internetand the behavior of engineered materials and of the economy,where many small individuals (web sites, molecules, investors)interact with each other in seemingly random ways leading tonovel behavior of the entire system. A classic goal of ProbabilityTheory and Statistics is to understand these situations. A particularlyintriguing set of problems concerns so called ``critical'' systemswhere even one individual can provide a tipping point for the wholesystem. The goal of this research project is to lay a firm foundationfor the mathematics needed to understand such critical systems, at leastin some special situations where there have been theoretical breakthroughsin the past several years. It is hoped that progress in thesespecial cases will lead to more general progress.
该项目包括研究,试图回答概率论,相互作用粒子系统和渗流两个领域中出现的基本问题。其中包括在(双)布朗网的前向和后向路径的接触点上标记位置的成核过程的构造和应用,以及在(临界)连续非简单回路过程的“双点”上概念相关的标记过程。这个循环过程是由PI和Federico Camia基于Schramm-Loewner演化(SLE)和Schramm和Smirnov的工作构造的,是二维临界渗流的满标度极限。环相互接触的双点代表了晶格点的尺度极限,在那里微观状态的变化会对连通性产生宏观影响。在许多情况下,比如互联网的运作、工程材料的行为和经济,许多小个体(网站,分子,投资者)以看似随机的方式相互作用,导致整个系统的行为改变。概率论和统计学的一个经典目标就是理解这些情况。一组特别有趣的问题涉及所谓的“关键”系统,即使是一个人也可以提供一个整体的临界点。这个研究项目的目标是为理解这些关键系统所需的数学奠定坚实的基础,至少在过去几年中有理论突破的一些特殊情况下。希望这些特殊情况的进展将导致更普遍的进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Newman其他文献
Cleaning and Sterilization of Used Cardiac Implantable Electronic Devices With Process Validation
通过流程验证对用过的心脏植入电子设备进行清洁和灭菌
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Thomas C. Crawford;Craig Allmendinger;Jay Snell;Kevin Weatherwax;Balasundaram Lavan;T. Baman;Patricia Sovitch;Daniel Alyesh;Thomas Carrigan;Noah Klugman;Denis Kune;Andrew B Hughey;Daniel Lautenbach;Nathan Sovitch;Karman Tandon;George Samson;Charles Newman;Sheldon Davis;Archie Brown;Brad Wasserman;Edward B Goldman;S. Arlinghaus;Hakan Oral;Kim A. Eagle - 通讯作者:
Kim A. Eagle
What can the Defence Medical Services learn from the COVID-19 pandemic in order to be ready for the future?
国防医疗服务部门可以从 COVID-19 大流行中学到什么,以便为未来做好准备?
- DOI:
10.1136/military-2022-002205 - 发表时间:
2022 - 期刊:
- 影响因子:1.5
- 作者:
Charles Newman - 通讯作者:
Charles Newman
Charles Newman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Newman', 18)}}的其他基金
Particle Systems, Percolation, and Scaling Limits
粒子系统、渗透和缩放限制
- 批准号:
1507019 - 财政年份:2015
- 资助金额:
$ 24.7万 - 项目类别:
Continuing Grant
Pan American Advanced Studies Institute on Topics in Percolative and Disordered Systems; Argentina and Chile; January 1-15, 2012
泛美渗透和无序系统高级研究所;
- 批准号:
1036424 - 财政年份:2011
- 资助金额:
$ 24.7万 - 项目类别:
Standard Grant
Particle Systems and Scaling Limits in Two (and More) Dimensions
二维(及更多)维度的粒子系统和缩放限制
- 批准号:
1007524 - 财政年份:2010
- 资助金额:
$ 24.7万 - 项目类别:
Continuing Grant
Near-critical two-dimensional random systems
近临界二维随机系统
- 批准号:
1007626 - 财政年份:2010
- 资助金额:
$ 24.7万 - 项目类别:
Standard Grant
PIRE: Percolative and Disordered Systems: A U.S.- Brazil-Netherlands Based International Collaboration
PIRE:渗透和无序系统:美国-巴西-荷兰的国际合作
- 批准号:
0730136 - 财政年份:2008
- 资助金额:
$ 24.7万 - 项目类别:
Continuing Grant
Mathematical Studies of Short-Ranged Spin Glasses
短程自旋玻璃的数学研究
- 批准号:
0604869 - 财政年份:2006
- 资助金额:
$ 24.7万 - 项目类别:
Continuing Grant
Establishing a Chemical Laboratory Technician Program at Mt. San Antonio College
在圣安东尼奥山学院建立化学实验室技术员计划
- 批准号:
0302944 - 财政年份:2003
- 资助金额:
$ 24.7万 - 项目类别:
Continuing grant
Collaborative Research: Mathematical Studies of Short-Ranged Spin Glasses
合作研究:短程自旋玻璃的数学研究
- 批准号:
0102587 - 财政年份:2001
- 资助金额:
$ 24.7万 - 项目类别:
Continuing Grant
Topics in Percolation and Particle Models
渗流和粒子模型主题
- 批准号:
0104278 - 财政年份:2001
- 资助金额:
$ 24.7万 - 项目类别:
Continuing Grant
Topics in Percolationand Particle Models
渗流和粒子模型主题
- 批准号:
9803267 - 财政年份:1998
- 资助金额:
$ 24.7万 - 项目类别:
Standard Grant
相似海外基金
Bond percolationゲルによる網目構造と力学物性の相関解明
使用键渗流凝胶阐明网络结构与机械性能之间的相关性
- 批准号:
23K23403 - 财政年份:2024
- 资助金额:
$ 24.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidating subsurface water percolation processes that control the depth of shallow sliding surface on soil-mantled hillslopes
阐明控制土覆盖山坡上浅滑动面深度的地下水渗滤过程
- 批准号:
23KJ1244 - 财政年份:2023
- 资助金额:
$ 24.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Percolation Theory and Related Topics
渗滤理论及相关主题
- 批准号:
2246494 - 财政年份:2023
- 资助金额:
$ 24.7万 - 项目类别:
Continuing Grant
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
- 批准号:
RGPIN-2019-06103 - 财政年份:2022
- 资助金额:
$ 24.7万 - 项目类别:
Discovery Grants Program - Individual
Bond percolationゲルによる網目構造と力学物性の相関解明
使用键渗流凝胶阐明网络结构与机械性能之间的相关性
- 批准号:
22H02135 - 财政年份:2022
- 资助金额:
$ 24.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bootstrap Percolation and Related Processes
Bootstrap 渗透及相关过程
- 批准号:
572362-2022 - 财政年份:2022
- 资助金额:
$ 24.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Random graphs and percolation processes
随机图和渗透过程
- 批准号:
RGPIN-2016-05949 - 财政年份:2022
- 资助金额:
$ 24.7万 - 项目类别:
Discovery Grants Program - Individual
Utilization of Percolation Theory and Multiphysics' Concept to Develop Dynamic Modeling and Accurate Upscaling Approaches for Two-Phase Flow during Immiscible Displacement of Heavy Oil in Porous Media
利用渗流理论和多物理场概念开发多孔介质中稠油非混相驱替过程中两相流的动态建模和精确放大方法
- 批准号:
RGPIN-2017-06877 - 财政年份:2022
- 资助金额:
$ 24.7万 - 项目类别:
Discovery Grants Program - Individual
Percolation on hierarchical lattices: cluster sizes and critical exponents
分层格子上的渗透:簇大小和临界指数
- 批准号:
573692-2022 - 财政年份:2022
- 资助金额:
$ 24.7万 - 项目类别:
University Undergraduate Student Research Awards