"Inverse Comparison Geometry"

《逆比较几何》

基本信息

  • 批准号:
    0102776
  • 负责人:
  • 金额:
    $ 8.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

Abstract for DMS - 0102776Inverse Comparison Geometry: Riemannian Comparison Theorems pertain to manifolds whose curvatures are bounded in some way, and are proven by comparing the geometry to that of a well known model space. I propose the name Inverse Comparison Geometry for the subject of constructing Riemannian manifolds with prescribed curvature conditions. My proposal focuses on the problem of constructing manifolds of positive and nonnegative curvature. In it, I outline my plans to (a) find counterexammples to the Uniform Pinching Conjecture among the 3-sphere bundles over the 4-sphere,(b) study two sided Cheeger perturbations of the metrics on biquotients and homogeneous spaces(c) search for nonnegative and positive curvature on certain homotopy 5 and 6 dimensional real projective spaces. (d) construct nonnegative curvature on ``double soul manifolds'',(e) study a rigid version of the ``double soul problem'', and(f) prove my conjecture---that the dimension of the image of a Riemannian submersion of a complete, positively curved manifold is strictly greater than half the dimension of the domain.These problems all address the general question of how does the curvature of a space effect its geometry and topology? Roughly speaking, curvature is what determines the trigonometry of a space. For example one can prove that the surface of the earth is curved with out looking at it from outer space. To do this have two people start at the north pole and travel in any two directions that are perpendicular to each other. If they travel at the same speed, they will eventually meet again at the south pole. On the other hand, if the same experiment were conducted on a flat world, the two people would never meet. They would keep getting further apart, even if they never reached the "edge" of the world. The main justification for studying this general question is that it seems intrinsically beautiful, intriguing, and natural. It has a long history, that dates back to the 1930's work of H. Hopf, Morse, Schoenberg, Meyers, and Synge.
DMS - 0102776的逆比较几何:黎曼比较定理是关于曲率以某种方式有界的流形,并通过与已知模型空间的几何比较来证明。我建议将构造具有规定曲率条件的黎曼流形这门学科命名为“逆比较几何”。我的建议集中于构造正曲率和非负曲率流形的问题。在这篇文章中,我概述了我的计划:(a)在4球上的3球束中找到一致夹紧猜想的反例,(b)研究双商和齐次空间上度量的两面Cheeger摄动(c)在某些同伦5维和6维实射影空间上寻找非负曲率和正曲率。(d)在“双魂流形”上构造非负曲率,(e)研究“双魂问题”的刚性版本,以及(f)证明我的猜想——一个完整的、正弯曲流形的黎曼淹没像的维数严格大于该域的一半维数。这些问题都解决了一个普遍的问题,即空间的曲率如何影响其几何和拓扑结构?粗略地说,曲率决定了空间的三角性质。例如,人们可以证明地球表面是弯曲的,而不需要从外太空看它。要做到这一点,让两个人从北极出发,在相互垂直的任意两个方向上旅行。如果它们以同样的速度行进,它们最终会在南极再次相遇。另一方面,如果同样的实验在一个平坦的世界上进行,这两个人永远不会相遇。即使他们从未到达世界的“边缘”,他们的距离也会越来越远。研究这个一般性问题的主要理由是,它似乎本质上是美丽的、有趣的和自然的。它有着悠久的历史,可以追溯到20世纪30年代H. Hopf、Morse、Schoenberg、Meyers和Synge的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frederick Wilhelm其他文献

Random Manifolds Have No Totally Geodesic Submanifolds
随机流形没有完全测地线子流形
Flats and submersions in non-negative curvature
  • DOI:
    10.1007/s10711-012-9696-2
  • 发表时间:
    2012-01-21
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Curtis Pro;Frederick Wilhelm
  • 通讯作者:
    Frederick Wilhelm
How to lift positive Ricci curvature
如何提升正里奇曲率
  • DOI:
    10.2140/gt.2015.19.1409
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2
  • 作者:
    C. Searle;Frederick Wilhelm
  • 通讯作者:
    Frederick Wilhelm
Spaces on and beyond the boundary of existence
存在边界之上和之外的空间
  • DOI:
    10.1007/bf02921805
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Petersen;Frederick Wilhelm;Shunhui Zhu
  • 通讯作者:
    Shunhui Zhu
Stability, Finiteness and Dimension Four
稳定性、有限性和四维
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Curtis Pro;Frederick Wilhelm
  • 通讯作者:
    Frederick Wilhelm

Frederick Wilhelm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frederick Wilhelm', 18)}}的其他基金

Comparison and Inverse Comparison Geometry
比较和逆比较几何
  • 批准号:
    2203686
  • 财政年份:
    2022
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Standard Grant
Workshop on Global Riemannian Geometry
全局黎曼几何研讨会
  • 批准号:
    0813659
  • 财政年份:
    2008
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Standard Grant
Riemannian Submersions and Positive Curvature
黎曼淹没和正曲率
  • 批准号:
    9803258
  • 财政年份:
    1998
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Continuing Grant
Career Development Program at Stony Brook Mathematics Department
石溪数学系职业发展计划
  • 批准号:
    9896066
  • 财政年份:
    1997
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Standard Grant
Career Development Program at Stony Brook Mathematics Department
石溪数学系职业发展计划
  • 批准号:
    9502015
  • 财政年份:
    1995
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9206203
  • 财政年份:
    1992
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Fellowship Award

相似海外基金

Investigating the dynamic nature of listening comprehension in EMI lectures: A comparison of Japan, Hong Kong, and Sweden
调查 EMI 讲座中听力理解的动态性质:日本、香港和瑞典的比较
  • 批准号:
    23K25340
  • 财政年份:
    2024
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Understanding Dike Propagation Through Comparison of High-fidelity Coupled Fracture and Fluid Flow Models and Field Observations
通过比较高保真耦合裂缝和流体流动模型以及现场观测来了解堤坝的扩展
  • 批准号:
    2333837
  • 财政年份:
    2024
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Continuing Grant
MCA Pilot PUI: Proxy-model comparison using carbon isotopes from annually banded marine calcifiers and ocean circulation inverse models to evaluate coastal carbon cycle processes
MCA Pilot PUI:使用年度带状海洋钙化物的碳同位素和海洋环流反演模型进行代理模型比较,以评估沿海碳循环过程
  • 批准号:
    2322042
  • 财政年份:
    2024
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Standard Grant
Comparison Framework - Legal Services
比较框架 - 法律服务
  • 批准号:
    10091101
  • 财政年份:
    2024
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Collaborative R&D
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
  • 批准号:
    495410
  • 财政年份:
    2023
  • 资助金额:
    $ 8.7万
  • 项目类别:
An International Comparison of the Art Production Strategies among Fringe Theatre Producers in Diverse Social Conditions
不同社会条件下边缘戏剧制作人艺术制作策略的国际比较
  • 批准号:
    22KJ3016
  • 财政年份:
    2023
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Contemporary Long-Term Homicide Trends in England and Wales in the Period 1977-2019 and a Comparison with Non-Lethal Violence Trends
1977-2019 年英格兰和威尔士当代长期凶杀趋势以及与非致命暴力趋势的比较
  • 批准号:
    ES/X000575/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Research Grant
Examining the long-term social legacy of mega urban projects - A comparison of Shanghai and Dujiangyan City
审视巨型城市项目的长期社会遗产——上海与都江堰市的比较
  • 批准号:
    ES/W003104/2
  • 财政年份:
    2023
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Research Grant
Collaborative Research: Ultra-High Resolution Paleostreamflow in Southeast Asia--Proxy/Model Comparison
合作研究:东南亚超高分辨率古水流——代理/模型比较
  • 批准号:
    2302669
  • 财政年份:
    2023
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Standard Grant
Comparison of clinical and health economic outcomes of COVID-19 inpatients: an ecological study
COVID-19 住院患者的临床和健康经济结果比较:一项生态研究
  • 批准号:
    23K16292
  • 财政年份:
    2023
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了