Workshop on Preservation of Stability Under Discretization

离散化下保持稳定性研讨会

基本信息

  • 批准号:
    0102878
  • 负责人:
  • 金额:
    $ 1.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-05-15 至 2002-04-30
  • 项目状态:
    已结题

项目摘要

Stability is a term used to describe a wide variety of issues revolving around the physical observability of a solution of a differential equation. Stability lies at the very heart of the ability to make predictions about physical situations from mathematics and are particularly relevant when numerical approximation is involved, since discretization causes perturbation of both the model and the data. Numerical stability issues are typically complex because addressing such questions often requires a wide range of mathematical techniques, involving not only standard methods of numerical analysis, but ideas from dynamical systems, geometry, functional analysis, and the theory of differential equations. This raises barriers both to young researchers trying to learn about numerical stability and to communication between researchers working in different areas yet facing similar stability problems. The goal of the Workshop on the Preservation of Stability under Discretization is twofold: (1) to increase the accessibility of numerical stability issues for young researchers and (2) provide an opportunity for the exchange of information and ideas between specialists in different application areas. The Workshop will host a series of lectures by leading experts, each of whom will each address a separate aspect of stability under discretization. The lectures will be aimed towards an audience of advanced graduate students and non-specialists and will be collected into a permanent archive. In addition, the invited speakers will host a series of discussion and analysis sessions for students and young researchers.Stability is the term used to describe the situation in which a physical quantity is affected by small disturbances taking place at remote distances and times. The "butterfly" effect in chaos is one well-known stability issue, but stability issues arise in nearly every kind of physical situation from the flow of fluids and gases to computing rocket trajectories to other planets. Stability is particular relevant to numerical modeling of physical situations on computers because the modeling itself induces widespread error/disturbances. Accounting for the effects of these discretization errors is difficult because it typically requires mathematical ideas from many areas, raising barriers both to learning about how deal with stability and to communication between different areas of specialization. The goal of the Workshop on the Preservation of Stability under Discretization is twofold: (1) to increase the accessibility of numerical stability issues for young researchers and (2) provide an opportunity for the exchange of information and ideas between specialists in different application areas. The Workshop will host a series of lectures by leading experts, each of whom will each address a separate aspect of stability under discretization. The lectures will be aimed towards an audience of advanced graduate students and non-specialists and will be collected into a permanent archive. In addition, the invited speakers will host a series of discussion and analysis sessions for students and young researchers.
稳定性是一个术语,用来描述围绕微分方程解的物理可观察性的各种各样的问题。稳定性是通过数学对物理情况进行预测的能力的核心,当涉及数值近似时,稳定性尤为重要,因为离散化会导致模型和数据的扰动。数值稳定性问题通常是复杂的,因为解决这类问题往往需要广泛的数学技术,不仅涉及数值分析的标准方法,还涉及动力系统、几何、泛函分析和微分方程理论的思想。这给试图学习数值稳定性的年轻研究人员和在不同领域工作但面临类似稳定性问题的研究人员之间的交流增加了障碍。离散化下保持稳定性研讨会的目标有两个:(1)增加年轻研究人员对数值稳定性问题的可及性;(2)为不同应用领域的专家提供交流信息和思想的机会。讲习班将由主要专家主持一系列讲座,每位专家将分别讨论离散化下稳定性的一个方面。讲座将以高级研究生和非专业人士为对象,并将被收集成永久档案。此外,受邀演讲者将为学生和青年研究人员主持一系列讨论和分析会议。稳定性是用来描述一个物理量受到发生在遥远距离和时间的小扰动影响的情况的术语。混沌中的“蝴蝶”效应是一个众所周知的稳定性问题,但稳定性问题几乎出现在每一种物理情况中,从流体和气体的流动到计算飞往其他行星的火箭轨迹。稳定性与计算机上物理情况的数值模拟特别相关,因为模拟本身会引起广泛的误差/干扰。考虑这些离散化误差的影响是困难的,因为它通常需要来自许多领域的数学思想,这增加了学习如何处理稳定性和不同专业领域之间沟通的障碍。离散化下保持稳定性研讨会的目标有两个:(1)增加年轻研究人员对数值稳定性问题的可及性;(2)为不同应用领域的专家提供交流信息和思想的机会。讲习班将由主要专家主持一系列讲座,每位专家将分别讨论离散化下稳定性的一个方面。讲座将以高级研究生和非专业人士为对象,并将被收集成永久档案。此外,受邀演讲者将为学生和青年研究人员主持一系列讨论和分析会议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Estep其他文献

<em>A posteriori</em> error estimation and adaptive mesh refinement for a multiscale operator decomposition approach to fluid–solid heat transfer
  • DOI:
    10.1016/j.jcp.2010.02.003
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Donald Estep;Simon Tavener;Tim Wildey
  • 通讯作者:
    Tim Wildey

Donald Estep的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Estep', 18)}}的其他基金

Collaborative Research: Construction and Analysis of Numerical Methods for Stochastic Inverse Problems with Application to Coastal Hydrodynamics
合作研究:随机反问题数值方法的构建和分析及其在海岸流体动力学中的应用
  • 批准号:
    1818777
  • 财政年份:
    2018
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Standard Grant
Collaborative research: Statistical and computational efficiency for massive data sets via approximation-regularization
协作研究:通过近似正则化实现海量数据集的统计和计算效率
  • 批准号:
    1407543
  • 财政年份:
    2014
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Standard Grant
Data-Driven Inverse Sensitivity Analysis for Predictive Coastal Ocean Modeling
预测沿海海洋建模的数据驱动逆敏感性分析
  • 批准号:
    1228206
  • 财政年份:
    2012
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Error Quantification and Control for Gravitational Waveform Simulation
FRG:协作研究:重力波形仿真的误差量化和控制
  • 批准号:
    1065046
  • 财政年份:
    2011
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Finite Element Methods for Discretizing Geometric PDEs with Nonlinear Constraints and Gauge Freedom
协作研究:具有非线性约束和规范自由度的离散几何偏微分方程的有限元方法
  • 批准号:
    0715135
  • 财政年份:
    2007
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Standard Grant
Orbit Methods in Dynamics
动力学中的轨道方法
  • 批准号:
    0700874
  • 财政年份:
    2007
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Continuing Grant
MSPA-CSE: Novel A Posteriori Analysis of Ecological Models: The Carbon Cycle
MSPA-CSE:生态模型的新颖后验分析:碳循环
  • 批准号:
    0434354
  • 财政年份:
    2004
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Standard Grant
IGERT: Program for Interdisciplinary Mathematics, Ecology, and Statistics (PRIMES)
IGERT:跨学科数学、生态学和统计学项目 (PRIMES)
  • 批准号:
    0221595
  • 财政年份:
    2003
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Continuing Grant
Computational Error Estimation and Adaptive Error Control for Multiscaled Differential Equations
多尺度微分方程的计算误差估计和自适应误差控制
  • 批准号:
    0107832
  • 财政年份:
    2001
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Standard Grant
Computational Error Estimation and Adaptive Error Control for Numerical Solutions of Differential Equations
微分方程数值解的计算误差估计和自适应误差控制
  • 批准号:
    9805748
  • 财政年份:
    1998
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Standard Grant

相似海外基金

Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
  • 批准号:
    AH/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Research Grant
Towards preservation of the natural knee: State-of-the-art approaches to understand the kinematics and tissue mechanics of human menisci in vivo.
保护自然膝盖:了解体内人体半月板运动学和组织力学的最先进方法。
  • 批准号:
    EP/Y002415/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Research Grant
I-Corps: Translation Potential of Multi-component Bioactives for Breastmilk Preservation
I-Corps:多成分生物活性物质对母乳保存的转化潜力
  • 批准号:
    2409744
  • 财政年份:
    2024
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Standard Grant
I-Corps: Using Peptides for Biomolecules Encapsulation, Storage, and Preservation
I-Corps:使用肽进行生物分子封装、储存和保存
  • 批准号:
    2414552
  • 财政年份:
    2024
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Standard Grant
Protecting spermatogonial stem cells from chemotherapy-induced damage for fertility preservation in childhood cancer
保护精原干细胞免受化疗引起的损伤,以保存儿童癌症的生育能力
  • 批准号:
    MR/Y011783/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Fellowship
Inclusive AI for Healthy Change, Retaining Identity Preservation
包容性人工智能促进健康变革,保留身份保护
  • 批准号:
    10059947
  • 财政年份:
    2023
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Grant for R&D
Development of high-dimensional optical analysis technology for preservation and restoration of cultural properties
开发用于文化遗产保护和修复的高维光学分析技术
  • 批准号:
    23H00499
  • 财政年份:
    2023
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of collection and preservation criteria and search terms for 'folk material': from factory parts to diaries
制定“民间材料”的收集和保存标准以及搜索术语:从工厂零件到日记
  • 批准号:
    23K00959
  • 财政年份:
    2023
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
I-Corps: Tri-Cure Hybrid Organo-Silicon Coatings for Surface Preservation
I-Corps:用于表面保护的 Tri-Cure 混合有机硅涂料
  • 批准号:
    2327701
  • 财政年份:
    2023
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
  • 批准号:
    23KJ0192
  • 财政年份:
    2023
  • 资助金额:
    $ 1.26万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了