Computational Error Estimation and Adaptive Error Control for Numerical Solutions of Differential Equations

微分方程数值解的计算误差估计和自适应误差控制

基本信息

  • 批准号:
    9805748
  • 负责人:
  • 金额:
    $ 7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-15 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

9805748 Estep Systems of quasi-linear reaction-diffusion-convection differential equations have widespread importance in modeling physical phenomena in such diverse fields as biology, chemistry, metallurgy, and combustion. Some examples are shear flow in fluids with temperature dependent viscosity; Hodgkin-Huxley type models of nerve bundles; and models of the spread of disease in populations. Because such problems are typically highly nonlinear and exhibit complex behavior, numerical solutions of the differential equations have become the main tool for investigation of their properties. However, these same qualities give rise to some fundamental scientific questions: How can reliable and accurate estimates of the accuracy of information computed from numerical solutions be obtained and how can a desired range of accuracy be achieved? The project will address these question on three levels: theoretical analysis; implementation in code; and application to practical problems. The proposed approach is based on developing an a posteriori theory of error estimation in which the error is estimated in terms of quantities depending on the numerical solution that can be computed or approximated. The theory will then be used to develop methods of computational error estimation and adaptive error control. The PI will also analyze the reliability and accuracy of the computational error estimates and, because stability has a direct impact on the accuracy of numerical solutions, the preservation of stability properties of the differential equation under discretization. Practical goals of this project include; a publicly-accessible code for solving general reaction-diffusion problems using computational error estimation and adaptive error control, applications to the practical models like those mentioned above, and an educational component in the form of a textbook on the finite element method for the basic nonlinear models of science.
小行星9805748 拟线性反应扩散对流微分方程组 方程在模拟物理现象中具有广泛的重要性, 如生物学、化学、冶金学和燃烧学等不同领域。 一些例子是流体中的剪切流, 粘度;神经束的Hodgkin-Huxley型模型;以及 疾病在人群中的传播。 因为这些问题是 典型地高度非线性并且表现出复杂的行为、数值 微分方程的解已经成为 调查他们的财产。 然而,这些相同的品质 提出了一些基本的科学问题:如何才能可靠, 准确估计信息的准确性, 如何获得数值解,以及如何获得所需的精度范围 实现? 该项目将从三个层次来解决这些问题:理论分析;代码实现; 并应用于实际问题。 所提出的方法是基于发展一个后验理论的错误 用数量来估计误差的估计 取决于可以计算的数值解, 近似。然后,该理论将用于开发以下方法: 计算误差估计和自适应误差控制。PI还将分析计算误差估计的可靠性和准确性,并且由于稳定性对数值解的准确性有直接影响,因此在离散化下微分方程的稳定性属性的保持。这个项目的实际目标包括:一个公共访问的代码,用于使用计算误差估计和自适应误差控制来解决一般的反应扩散问题, 以上所述,以及教育部分的形式, 基本非线性模型的有限元法教科书 科学

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Estep其他文献

<em>A posteriori</em> error estimation and adaptive mesh refinement for a multiscale operator decomposition approach to fluid–solid heat transfer
  • DOI:
    10.1016/j.jcp.2010.02.003
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Donald Estep;Simon Tavener;Tim Wildey
  • 通讯作者:
    Tim Wildey

Donald Estep的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Estep', 18)}}的其他基金

Collaborative Research: Construction and Analysis of Numerical Methods for Stochastic Inverse Problems with Application to Coastal Hydrodynamics
合作研究:随机反问题数值方法的构建和分析及其在海岸流体动力学中的应用
  • 批准号:
    1818777
  • 财政年份:
    2018
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative research: Statistical and computational efficiency for massive data sets via approximation-regularization
协作研究:通过近似正则化实现海量数据集的统计和计算效率
  • 批准号:
    1407543
  • 财政年份:
    2014
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Data-Driven Inverse Sensitivity Analysis for Predictive Coastal Ocean Modeling
预测沿海海洋建模的数据驱动逆敏感性分析
  • 批准号:
    1228206
  • 财政年份:
    2012
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Error Quantification and Control for Gravitational Waveform Simulation
FRG:协作研究:重力波形仿真的误差量化和控制
  • 批准号:
    1065046
  • 财政年份:
    2011
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Finite Element Methods for Discretizing Geometric PDEs with Nonlinear Constraints and Gauge Freedom
协作研究:具有非线性约束和规范自由度的离散几何偏微分方程的有限元方法
  • 批准号:
    0715135
  • 财政年份:
    2007
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Orbit Methods in Dynamics
动力学中的轨道方法
  • 批准号:
    0700874
  • 财政年份:
    2007
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
MSPA-CSE: Novel A Posteriori Analysis of Ecological Models: The Carbon Cycle
MSPA-CSE:生态模型的新颖后验分析:碳循环
  • 批准号:
    0434354
  • 财政年份:
    2004
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
IGERT: Program for Interdisciplinary Mathematics, Ecology, and Statistics (PRIMES)
IGERT:跨学科数学、生态学和统计学项目 (PRIMES)
  • 批准号:
    0221595
  • 财政年份:
    2003
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
Computational Error Estimation and Adaptive Error Control for Multiscaled Differential Equations
多尺度微分方程的计算误差估计和自适应误差控制
  • 批准号:
    0107832
  • 财政年份:
    2001
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Workshop on Preservation of Stability Under Discretization
离散化下保持稳定性研讨会
  • 批准号:
    0102878
  • 财政年份:
    2001
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Laplace Error惩罚函数的变量选择方法及其在全基因组关联分析中的应用
  • 批准号:
    11001280
  • 批准年份:
    2010
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
  • 批准号:
    RGPIN-2021-04357
  • 财政年份:
    2022
  • 资助金额:
    $ 7万
  • 项目类别:
    Discovery Grants Program - Individual
Accuracy estimation and improvement of surgical navigation system based on error probability distribution and error propagation model
基于误差概率分布和误差传播模型的手术导航系统精度估计与改进
  • 批准号:
    22K12838
  • 财政年份:
    2022
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
  • 批准号:
    DGECR-2021-00428
  • 财政年份:
    2021
  • 资助金额:
    $ 7万
  • 项目类别:
    Discovery Launch Supplement
Study on wall stress model and error estimation for practical LES of separated and reattached flow
分离重附流实用LES壁面应力模型及误差估计研究
  • 批准号:
    21K14083
  • 财政年份:
    2021
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
  • 批准号:
    RGPIN-2021-04357
  • 财政年份:
    2021
  • 资助金额:
    $ 7万
  • 项目类别:
    Discovery Grants Program - Individual
Trajectory error estimation for machining center cutter path due to motion error between interpolation segments
插补段之间运动误差引起的加工中心刀具轨迹轨迹误差估计
  • 批准号:
    21K03811
  • 财政年份:
    2021
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of objective wildlife damage area estimation technology, and verification of error conditions between the estimated objective indicators and the subjective damage perceptions
建立客观野生动物受损面积估算技术,并验证估算的客观指标与主观受损感知之间的误差情况
  • 批准号:
    21K14942
  • 财政年份:
    2021
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Augmenting the Harmonic Balance Method by Stability Analysis and Error Estimation and its Application to Vibro-Impact Processes
通过稳定性分析和误差估计增强谐波平衡法及其在振动冲击过程中的应用
  • 批准号:
    438529800
  • 财政年份:
    2020
  • 资助金额:
    $ 7万
  • 项目类别:
    Research Grants
Estimation of cognitive error risk by using neurofeedback driven dynamic functional connectivity
使用神经反馈驱动的动态功能连接估计认知错误风险
  • 批准号:
    19H04025
  • 财政年份:
    2019
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an estimation method of error causes in problems for representing learners' understanding of program behavior
开发问题中错误原因的估计方法,以代表学习者对程序行为的理解
  • 批准号:
    19K21782
  • 财政年份:
    2019
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了