Orbit Methods in Dynamics

动力学中的轨道方法

基本信息

  • 批准号:
    0700874
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

Orbit methods seek to understand dynamical systems by investigating the large-scale structure of their orbits through combinatorial, geometric, and statistical techniques. The principal investigator has developed a range of tools to explore such spaces of orbits and to study notions of equivalence of these structures that allow for measuring and controlling distortions or rearrangments of them. The goal of this program is to extend these orbit methods to as broad a perspective as possible and to apply them to answer interesting questions. These methods have a significant history in the study of systems that preserve probability measures. Two active new directions of work are extension of this theory to the almost continuous case, and the Cantor minimal theory. Both involve improving the regularity of any allowed isomorphisms beyond measurability, in the first case to be continuous with probability one and in the second actually to be continuous. Another broad attempt at extending these methods is to study probability measures diffused on the leaves of a foliation. The diffused measure gives a mass distribution on the leaves. One removes all conditions, though linking the dynamics and the measure. For one-dimensional leaves an ergodic theorem can be proved in this general context, and extending it to higher dimensions appears possible. This is a potentially very fruitful domain for extending orbit methods to quite general large-scale structures. A variety of other directions are pursued, including the beginnings of a collaboration in applied fluid dynamics that uses the metrics developed for measuring large-scale distortion of orbits to create a bag of tools for assessing the accuracy of numerical models.Large arrays of data arise in many contexts, from genomics to digital imaging to geology. Similar arrays arise in a mathematical context as trajectories or orbits in the space of states of a dynamical system. Orbit methods involve notions of the size of distortion of such arrays or different ways of measuring how similar two such arrays are. One tunes the notion of distortion or distance to the context of the problem. There is the possibility of deep cross-fertilization between areas of engineering and applied science and abstract dynamics in this context. For example, the evolutionary distance between species can be measured in terms of how similar their genomes are, where one must tune what one means by similar to make biological sense. As another example, in compressing the data in a visual image one is perhaps willing to lose some precision so long as the picture is not significantly distorted. What does one mean by a significant distortion? As a third example, in modeling the meanderings of rivers one must establish what it would mean for a model to capture the real behavior of this complex phenomenon. Again, this can take the form of a thoughtfully tuned notion of closeness of patterns. One thrust of this project is to seek collaborations that look for such cross-fertilization of ideas. This has already begun in the areas of genomics and of fluid flow.
轨道方法试图通过组合、几何和统计技术研究动力系统轨道的大尺度结构来理解动力系统。首席研究员开发了一系列工具来探索这种轨道空间,并研究这些结构的等效概念,以便测量和控制它们的扭曲或反射。这个程序的目标是将这些轨道方法扩展到尽可能广泛的视角,并应用它们来回答有趣的问题。这些方法在研究保留概率测度的系统中有着重要的历史。两个活跃的新方向的工作是扩展这个理论的几乎连续的情况下,和康托极小理论。 两者都涉及到提高任何允许的同构超越可测性的规律性,在第一种情况下是连续的概率为1,在第二种情况下实际上是连续的。 扩展这些方法的另一个广泛的尝试是研究在叶理的叶子上扩散的概率测度。扩散测量给出了叶子上的质量分布。一个删除所有的条件,虽然连接的动力学和措施。 对于一维叶遍历定理可以证明在这个一般的情况下,并将其扩展到更高的维度似乎是可能的。 这是一个潜在的非常富有成效的域扩展轨道方法相当一般的大型结构。 他们还在探索其他各种方向,包括开始在应用流体动力学领域开展合作,利用为测量大规模轨道扭曲而开发的指标,创建一系列工具,用于评估数值模型的准确性。从基因组学到数字成像,再到地质学,在许多情况下都会出现大量数据。 类似的阵列出现在数学背景下的轨迹或轨道的状态空间中的动力系统。轨道方法涉及这样的阵列的失真大小的概念或测量两个这样的阵列有多相似的不同方法。 人们将扭曲或距离的概念调整到问题的背景。在这种情况下,工程和应用科学以及抽象动力学领域之间存在着深入交流的可能性。 例如,物种之间的进化距离可以用它们的基因组有多相似来衡量,人们必须调整相似的含义才能有生物学意义。 作为另一个例子,在压缩可视图像中的数据时,人们可能愿意损失一些精度,只要图像没有显著失真。 严重扭曲是什么意思? 作为第三个例子,在模拟河流的曲折时,必须建立一个模型来捕捉这种复杂现象的真实的行为。同样,这可以采取经过深思熟虑调整的模式接近度概念的形式。这个项目的一个重点是寻求合作,寻找这种想法的交叉施肥。 这已经在基因组学和流体流动领域开始。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Estep其他文献

<em>A posteriori</em> error estimation and adaptive mesh refinement for a multiscale operator decomposition approach to fluid–solid heat transfer
  • DOI:
    10.1016/j.jcp.2010.02.003
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Donald Estep;Simon Tavener;Tim Wildey
  • 通讯作者:
    Tim Wildey

Donald Estep的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Estep', 18)}}的其他基金

Collaborative Research: Construction and Analysis of Numerical Methods for Stochastic Inverse Problems with Application to Coastal Hydrodynamics
合作研究:随机反问题数值方法的构建和分析及其在海岸流体动力学中的应用
  • 批准号:
    1818777
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative research: Statistical and computational efficiency for massive data sets via approximation-regularization
协作研究:通过近似正则化实现海量数据集的统计和计算效率
  • 批准号:
    1407543
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Data-Driven Inverse Sensitivity Analysis for Predictive Coastal Ocean Modeling
预测沿海海洋建模的数据驱动逆敏感性分析
  • 批准号:
    1228206
  • 财政年份:
    2012
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Error Quantification and Control for Gravitational Waveform Simulation
FRG:协作研究:重力波形仿真的误差量化和控制
  • 批准号:
    1065046
  • 财政年份:
    2011
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Finite Element Methods for Discretizing Geometric PDEs with Nonlinear Constraints and Gauge Freedom
协作研究:具有非线性约束和规范自由度的离散几何偏微分方程的有限元方法
  • 批准号:
    0715135
  • 财政年份:
    2007
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
MSPA-CSE: Novel A Posteriori Analysis of Ecological Models: The Carbon Cycle
MSPA-CSE:生态模型的新颖后验分析:碳循环
  • 批准号:
    0434354
  • 财政年份:
    2004
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
IGERT: Program for Interdisciplinary Mathematics, Ecology, and Statistics (PRIMES)
IGERT:跨学科数学、生态学和统计学项目 (PRIMES)
  • 批准号:
    0221595
  • 财政年份:
    2003
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Computational Error Estimation and Adaptive Error Control for Multiscaled Differential Equations
多尺度微分方程的计算误差估计和自适应误差控制
  • 批准号:
    0107832
  • 财政年份:
    2001
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Workshop on Preservation of Stability Under Discretization
离散化下保持稳定性研讨会
  • 批准号:
    0102878
  • 财政年份:
    2001
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Computational Error Estimation and Adaptive Error Control for Numerical Solutions of Differential Equations
微分方程数值解的计算误差估计和自适应误差控制
  • 批准号:
    9805748
  • 财政年份:
    1998
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
New methods to capture protein dynamics of the TSC-mTOR signalling axis.
捕获 TSC-mTOR 信号轴蛋白质动态的新方法。
  • 批准号:
    DE240100992
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Early Career Researcher Award
Combining Molecular Simulations and Biophysical Methods to Characterize Conformational Dynamics of the HIV-1 Envelope Glycoprotein
结合分子模拟和生物物理方法来表征 HIV-1 包膜糖蛋白的构象动力学
  • 批准号:
    10749273
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
  • 批准号:
    2331033
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Development of the measurement, identification and quantification methods for investigating nanoplastic dynamics from terrestrial to atmospheric environments
开发用于研究从陆地到大气环境的纳米塑料动力学的测量、识别和量化方法
  • 批准号:
    22KJ1953
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development & application of computational methods for the study of protein dynamics with PmHMGR as a model system
发展
  • 批准号:
    10607487
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
Enabling ion Mobility Spectrometry/Mass Spectrometry Methods to Study Conformational Dynamics of Protein Systems
使用离子淌度谱/质谱方法来研究蛋白质系统的构象动力学
  • 批准号:
    2305173
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
IIBR Research Methods: Probing the structure, abundance, dynamics, and function of protein complexes within their cellular environment
IIBR 研究方法:探测细胞环境中蛋白质复合物的结构、丰度、动态和功能
  • 批准号:
    2327468
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
SCALE:Industry empowerment to multiphase fluid dynamics simulations using Artificial Intelligence & statistical methods on modern hardware architectur
规模:使用人工智能进行多相流体动力学模拟的行业授权
  • 批准号:
    EP/Y034686/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Development of numerical methods for simulating quantum dynamics towards the control of quantum computers
开发用于模拟量子动力学以控制量子计算机的数值方法
  • 批准号:
    23K13042
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了