Computational Error Estimation and Adaptive Error Control for Multiscaled Differential Equations

多尺度微分方程的计算误差估计和自适应误差控制

基本信息

  • 批准号:
    0107832
  • 负责人:
  • 金额:
    $ 15.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-15 至 2005-07-31
  • 项目状态:
    已结题

项目摘要

Multiscaled physical systems involving processes acting on vastly different scales arise in a variety of important applications. Analyzing such systems present overwhelming challenges to mathematical analysis and therefore numerical simulation has become a centrally important tool. However, multi- scaled problems also strain the limit of current computational abilities and resources because of the resolution required to approximate behavior on the small scales accurately. The principle investigator will attack this problem by means of computational error estimation and adaptive error control. He will develop residual-based a posteriori estimates of user-chosen functionals of the solution given in terms of the computed numerical solution. The proposed approach accounts for the global effects of stability through a variational analysis and the dual problem to the original problem. The computational estimates will be used to guide the discretization resolution in order to efficiently compute numerical solutions of a desired accuracy. The research in this proposal will encompass development of computational error estimates, analysis of the reliability and accuracy of the estimates, implementation of adaptive finite element codes, and the use of these codes to investigate physical systems. The underlying applications driving this research will be investigations into the behavior of a small number of particles suspended in a low-Reynolds number flow and reaction- diffusion systems arising in shear flow problems, general relativity, modeling of pattern formation in biological systems, and population dynamics.Some physical systems involve processes that act on vastly different scales. An example is given by the motion of small particles suspended in a slow flowing fluid, as for example occurs in riverbeds. In this situation, the interactions of the particles can occur on a very rapid time scale as they approach each other compared to motion of the fluid. Other multi-scaled systems include pattern formation in biological systems like stripes on Zebras, the dynamics of diseases in populations, and problems involving general relativity. Computer simulations of such systems have become a main tool for understanding and predicting their behavior. Yet the multi-scaled aspects strain current computational ability because of the resolution needed to approximate the behavior on small scales accurately. The principle investigator will attack this problem by developing computational error estimates to be used to guide the resolution needed at each point in space and time to obtain simulations of a desired accuracy. The resolution will be adjusted through a feedback mechanism as a system evolves. The proposed research encompasses development of techniques to estimate the error and adjust the resolution of the approximation, implementation of these techniques into computer programs that will be made available to the public, and the use of these computer programs to investigate real physical systems including those mentioned above.
多尺度物理系统涉及在不同尺度上作用的过程,在各种重要应用中出现。分析这样的系统对数学分析提出了巨大的挑战,因此数值模拟已经成为一个重要的工具。然而,多尺度问题也使当前计算能力和资源的极限紧张,因为需要精确地近似小尺度的行为。主要研究者将通过计算误差估计和自适应误差控制来解决这个问题。他将开发基于残差的后验估计的用户选择的功能的解决方案,根据计算的数值解决方案。该方法通过变分分析和对原问题的对偶问题来解释稳定性的全局效应。计算估计将用于指导离散化分辨率,以便有效地计算所需精度的数值解。本提案中的研究将包括计算误差估计的发展,估计的可靠性和准确性的分析,自适应有限元代码的实施,以及使用这些代码来研究物理系统。推动这项研究的潜在应用将是研究在低雷诺数流动中悬浮的少量颗粒的行为,以及在剪切流动问题中产生的反应扩散系统,广义相对论,生物系统中模式形成的建模,以及种群动力学。一些物理系统涉及的过程在很大程度上是不同的。一个例子是悬浮在缓慢流动的流体中的小颗粒的运动,例如发生在河床中的运动。在这种情况下,粒子的相互作用可以在非常快的时间尺度上发生,因为它们彼此接近,而不是流体的运动。其他多尺度系统包括生物系统的模式形成,如斑马的条纹,种群中疾病的动态,以及涉及广义相对论的问题。这种系统的计算机模拟已经成为理解和预测其行为的主要工具。然而,由于需要精确地近似小尺度上的行为,多尺度方面使电流计算能力紧张。主要研究者将通过开发计算误差估计来解决这个问题,该估计用于指导空间和时间上每个点所需的分辨率,以获得所需精度的模拟。随着系统的发展,该决议将通过反馈机制进行调整。建议的研究包括估计误差和调整近似分辨率的技术的发展,将这些技术实现到将向公众提供的计算机程序中,以及使用这些计算机程序来调查真实的物理系统,包括上面提到的那些。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Estep其他文献

<em>A posteriori</em> error estimation and adaptive mesh refinement for a multiscale operator decomposition approach to fluid–solid heat transfer
  • DOI:
    10.1016/j.jcp.2010.02.003
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Donald Estep;Simon Tavener;Tim Wildey
  • 通讯作者:
    Tim Wildey

Donald Estep的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Estep', 18)}}的其他基金

Collaborative Research: Construction and Analysis of Numerical Methods for Stochastic Inverse Problems with Application to Coastal Hydrodynamics
合作研究:随机反问题数值方法的构建和分析及其在海岸流体动力学中的应用
  • 批准号:
    1818777
  • 财政年份:
    2018
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Standard Grant
Collaborative research: Statistical and computational efficiency for massive data sets via approximation-regularization
协作研究:通过近似正则化实现海量数据集的统计和计算效率
  • 批准号:
    1407543
  • 财政年份:
    2014
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Standard Grant
Data-Driven Inverse Sensitivity Analysis for Predictive Coastal Ocean Modeling
预测沿海海洋建模的数据驱动逆敏感性分析
  • 批准号:
    1228206
  • 财政年份:
    2012
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Error Quantification and Control for Gravitational Waveform Simulation
FRG:协作研究:重力波形仿真的误差量化和控制
  • 批准号:
    1065046
  • 财政年份:
    2011
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Finite Element Methods for Discretizing Geometric PDEs with Nonlinear Constraints and Gauge Freedom
协作研究:具有非线性约束和规范自由度的离散几何偏微分方程的有限元方法
  • 批准号:
    0715135
  • 财政年份:
    2007
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Standard Grant
Orbit Methods in Dynamics
动力学中的轨道方法
  • 批准号:
    0700874
  • 财政年份:
    2007
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Continuing Grant
MSPA-CSE: Novel A Posteriori Analysis of Ecological Models: The Carbon Cycle
MSPA-CSE:生态模型的新颖后验分析:碳循环
  • 批准号:
    0434354
  • 财政年份:
    2004
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Standard Grant
IGERT: Program for Interdisciplinary Mathematics, Ecology, and Statistics (PRIMES)
IGERT:跨学科数学、生态学和统计学项目 (PRIMES)
  • 批准号:
    0221595
  • 财政年份:
    2003
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Continuing Grant
Workshop on Preservation of Stability Under Discretization
离散化下保持稳定性研讨会
  • 批准号:
    0102878
  • 财政年份:
    2001
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Standard Grant
Computational Error Estimation and Adaptive Error Control for Numerical Solutions of Differential Equations
微分方程数值解的计算误差估计和自适应误差控制
  • 批准号:
    9805748
  • 财政年份:
    1998
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Laplace Error惩罚函数的变量选择方法及其在全基因组关联分析中的应用
  • 批准号:
    11001280
  • 批准年份:
    2010
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
  • 批准号:
    RGPIN-2021-04357
  • 财政年份:
    2022
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Discovery Grants Program - Individual
Accuracy estimation and improvement of surgical navigation system based on error probability distribution and error propagation model
基于误差概率分布和误差传播模型的手术导航系统精度估计与改进
  • 批准号:
    22K12838
  • 财政年份:
    2022
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
  • 批准号:
    DGECR-2021-00428
  • 财政年份:
    2021
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Discovery Launch Supplement
Study on wall stress model and error estimation for practical LES of separated and reattached flow
分离重附流实用LES壁面应力模型及误差估计研究
  • 批准号:
    21K14083
  • 财政年份:
    2021
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
  • 批准号:
    RGPIN-2021-04357
  • 财政年份:
    2021
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Discovery Grants Program - Individual
Trajectory error estimation for machining center cutter path due to motion error between interpolation segments
插补段之间运动误差引起的加工中心刀具轨迹轨迹误差估计
  • 批准号:
    21K03811
  • 财政年份:
    2021
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of objective wildlife damage area estimation technology, and verification of error conditions between the estimated objective indicators and the subjective damage perceptions
建立客观野生动物受损面积估算技术,并验证估算的客观指标与主观受损感知之间的误差情况
  • 批准号:
    21K14942
  • 财政年份:
    2021
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Augmenting the Harmonic Balance Method by Stability Analysis and Error Estimation and its Application to Vibro-Impact Processes
通过稳定性分析和误差估计增强谐波平衡法及其在振动冲击过程中的应用
  • 批准号:
    438529800
  • 财政年份:
    2020
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Research Grants
Estimation of cognitive error risk by using neurofeedback driven dynamic functional connectivity
使用神经反馈驱动的动态功能连接估计认知错误风险
  • 批准号:
    19H04025
  • 财政年份:
    2019
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an estimation method of error causes in problems for representing learners' understanding of program behavior
开发问题中错误原因的估计方法,以代表学习者对程序行为的理解
  • 批准号:
    19K21782
  • 财政年份:
    2019
  • 资助金额:
    $ 15.2万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了