Isoperimetric Inequalities
等周不等式
基本信息
- 批准号:0104363
- 负责人:
- 金额:$ 27.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for DMS - 0104363The investigators' research focuses on establishing sharp geometricinequalities that are invariant under linear or affine transformationsand using them to obtain new analytic inequalities. Since an affinestructure contains no notion of distance or angle, one might think thatthere is little to say or do. In fact, there is a rich and deep theorythat already encompasses many of the most important aspects of Euclideangeometry, including the sharp isoperimetric and Sobolev inequalities.Most of the investigators' efforts will be devoted to developing andunderstanding the Brunn-Minkowski theory and its generalizations.The investigators' work involves some of the most fundamental objects inmathematics: bodies in and functions of ordinary Euclidean space. Theseare used to represent real objects and phenomena in science andengineering. Although it is impossible to predict the future impact ofthis work, the investigators believe that the concepts and techniquesdeveloped in this project could prove to be useful in fields ranging frompure mathematical areas such as differential geometry, partial differentialequations, and Banach spaces to more applied areas such as robot vision,information theory, and stereology.
DMS -0104363摘要研究人员的研究重点是建立在线性或仿射变换下不变的尖锐几何不等式,并利用它们获得新的解析不等式。由于仿射结构不包含距离或角度的概念,人们可能会认为没有什么可说或可做的。事实上,有一个丰富而深刻的理论,已经包含了许多最重要的方面,欧几里德angeometrics,包括尖锐的等周和Sobolev不等式。大部分的调查人员的努力将致力于发展和理解Brunn-Minkowski理论及其推广。调查人员的工作涉及一些最基本的对象在数学:机构和功能的普通欧几里德空间。这些被用来表示科学和工程中的真实的物体和现象。虽然无法预测这项工作的未来影响,但研究人员认为,该项目中开发的概念和技术可以证明在从纯数学领域(如微分几何,偏微分方程和Banach空间)到更多应用领域(如机器人视觉,信息论和体视学)的领域中是有用的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erwin Lutwak其他文献
A dual of the isepiphanic inequality
- DOI:
10.1007/bf01224661 - 发表时间:
1976-12-01 - 期刊:
- 影响因子:0.500
- 作者:
Erwin Lutwak - 通讯作者:
Erwin Lutwak
Rotation means of projections
- DOI:
10.1007/bf02785674 - 发表时间:
1987-06-01 - 期刊:
- 影响因子:0.800
- 作者:
Erwin Lutwak - 通讯作者:
Erwin Lutwak
Erwin Lutwak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erwin Lutwak', 18)}}的其他基金
Shape Discovery for Convex Bodies: Measures, Invariants, and Applications
凸体的形状发现:测量、不变量和应用
- 批准号:
2005875 - 财政年份:2020
- 资助金额:
$ 27.85万 - 项目类别:
Continuing Grant
Shape Discovery for Convex Bodies: Measures, Invariants, and Applications
凸体的形状发现:测量、不变量和应用
- 批准号:
1710450 - 财政年份:2017
- 资助金额:
$ 27.85万 - 项目类别:
Continuing Grant
Mathematical Sciences: Isoperimetric Inequalities
数学科学:等周不等式
- 批准号:
9507988 - 财政年份:1995
- 资助金额:
$ 27.85万 - 项目类别:
Continuing Grant
Mathematical Sciences: Isoperimetric Inequalities
数学科学:等周不等式
- 批准号:
9123571 - 财政年份:1992
- 资助金额:
$ 27.85万 - 项目类别:
Standard Grant
Mathematical Sciences: Isoperimetric Inequalities
数学科学:等周不等式
- 批准号:
8902550 - 财政年份:1989
- 资助金额:
$ 27.85万 - 项目类别:
Continuing grant
相似海外基金
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
- 批准号:
2340195 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Continuing Grant
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
- 批准号:
2896389 - 财政年份:2023
- 资助金额:
$ 27.85万 - 项目类别:
Studentship
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
- 批准号:
2785744 - 财政年份:2023
- 资助金额:
$ 27.85万 - 项目类别:
Studentship
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2022
- 资助金额:
$ 27.85万 - 项目类别:
Discovery Grants Program - Individual
Erdos-Ko-Rado type problems, Isoperimetric inequalities, and other topics in Combinatorics.
Erdos-Ko-Rado 类型问题、等周不等式以及组合学中的其他主题。
- 批准号:
2614845 - 财政年份:2021
- 资助金额:
$ 27.85万 - 项目类别:
Studentship
Erdos-Ko-Rado type problems, Isoperimetric inequalities, and other topics in Combinatorics.
Erdos-Ko-Rado 类型问题、等周不等式以及组合学中的其他主题。
- 批准号:
2611263 - 财政年份:2021
- 资助金额:
$ 27.85万 - 项目类别:
Studentship
Weighted isoperimetric inequalities and some applications
加权等周不等式和一些应用
- 批准号:
2525697 - 财政年份:2021
- 资助金额:
$ 27.85万 - 项目类别:
Studentship
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2021
- 资助金额:
$ 27.85万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2020
- 资助金额:
$ 27.85万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2019
- 资助金额:
$ 27.85万 - 项目类别:
Discovery Grants Program - Individual