Isoperimetric Inequalities

等周不等式

基本信息

  • 批准号:
    1312181
  • 负责人:
  • 金额:
    $ 46.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS 1312181, Principal Investigator: Erwin Lutwak, Deane Yang, Gaoyang ZhangThis proposal aims to develop both extensions and duals of the classical Brunn-Minkowski theory. One of the PIs has shown that for each p greater than 1 there is an Lp Brunn-Minkowski theory. Thus far, most work on this new theory has been limited to p greater than 1, but the PIs together with Boroczky have made progress in the singular case of p = 0. Just as the classical Minkowski problem is a central focus of the classical Brunn-Minkowski theory, its Lp analogue is central to the new theory. For p greater than 1, there has been significant progress on the elliptic PDE now known as the Lp Minkowski problem. A complete solution of the zero-th Minkowski problem would have a profound impact on a number of important questions. The PIs in collaboration with Boroczky have established both necessary and sufficient conditions for the existence of solutions to this logarithmic Minkowski problem when the prescribed "data"' is even. They have also established uniqueness in two dimensions. Proving uniqueness in higher dimensions is part of the proposed work. One particular focus of the PIs' research is the development of affine isoperimetric inequalities. Over the years the PIs have established a number of sharp affine isoperimetric inequalities and their analytic counterparts. New methods recently developed by the PIs will be used to extend earlier work. While the Brunn-Minkowski theory has been an effective tool for solving a variety of basic inverse problems involving data about projections of convex bodies onto subspaces, the study of a dual Brunn-Minkowski theory initiated by one of the PIs is ideal for dual questions involving intersections of convex bodies with subspaces. The PIs have recently discovered new dual curvature measures that arise naturally within the dual theory and believe that newly developed tools within the dual theory can be used to solve the PDE that is the natural dual analogue of the Christoffel-Minkowski problem. An intensive effort to solve this PDE is a central part of the work proposed. Previous work of the PIs has indicated fascinating parallels between information theory and both the Lp Brunn-Minkowski theory and its dual. The PIs will continue to investigate connections between a subject that is associated with Electrical Engineering and one that is considered pure mathematics.The Brunn-Minkowski theory and its dual are the core of convex geometric analysis and are the foundation of Geometric Tomography. Geometric Tomography aims at retrieving information about a geometric object from data about its lower dimensional sections or projections. It has had and clearly will continue to have practical applications in science, engineering, and even medicine (think CAT scan machines). While isoperimetric inequalities go back to the ancient Greeks, many of the newer ones are applicable in geometry, analysis, and even engineering. The new inequalities and theories that the PIs propose to establish (and extend) should result in the development of mathematical tools that offer potential new applications to mathematics, science, and engineering.
AbstractAward:DMS 1312181,主要研究者:Erwin Lutwak,Deane Yang,Gaoyang Zhang该提案旨在发展经典Brunn-Minkowski理论的扩展和扩展。其中一个PI已经表明,对于每个大于1的p,存在Lp Brunn-Minkowski理论。到目前为止,关于这个新理论的大多数工作都局限于p大于1,但是PI和Boroczky在p = 0的奇异情况下取得了进展。正如经典闵可夫斯基问题是经典Brunn-Minkowski理论的中心焦点一样,它的Lp类似物也是新理论的中心。当p大于1时,椭圆型偏微分方程已经有了显著的进展,现在被称为Lp Minkowski问题。第零个闵可夫斯基问题的完整解决方案将对许多重要问题产生深远的影响。与Boroczky合作的PI已经建立了这个对数Minkowski问题的解存在的必要和充分条件,当规定的“数据”是偶数时。他们还在两个维度上建立了独特性。在更高维度中证明唯一性是拟议工作的一部分。PI研究的一个特别重点是仿射等周不等式的发展。多年来,PI已经建立了一些尖锐的仿射等周不等式及其解析对应。PI最近开发的新方法将用于扩展早期的工作。虽然Brunn-Minkowski理论是解决各种基本反问题的有效工具,这些问题涉及凸体到子空间的投影数据,但由PI之一发起的对偶Brunn-Minkowski理论的研究对于涉及凸体与子空间相交的对偶问题是理想的。PI最近发现了对偶理论中自然产生的新的对偶曲率测量,并认为对偶理论中新开发的工具可以用来解决PDE,这是Christoffel-Minkowski问题的自然对偶模拟。一个密集的努力来解决这个PDE是一个核心部分的工作建议。PI以前的工作表明,信息论与Lp Brunn-Minkowski理论及其对偶理论之间有着迷人的相似之处。PI将继续研究与电气工程相关的学科与被认为是纯数学的学科之间的联系。Brunn-Minkowski理论及其对偶是凸几何分析的核心,也是几何层析成像的基础。几何层析成像旨在从关于其低维截面或投影的数据中检索关于几何对象的信息。它已经并显然将继续在科学,工程甚至医学(想想CAT扫描机器)中有实际应用。虽然等周不等式可以追溯到古希腊,但许多较新的不等式在几何,分析甚至工程中都适用。PI提出建立(和扩展)的新的不等式和理论应该导致数学工具的发展,为数学,科学和工程提供潜在的新应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erwin Lutwak其他文献

A dual of the isepiphanic inequality
  • DOI:
    10.1007/bf01224661
  • 发表时间:
    1976-12-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Erwin Lutwak
  • 通讯作者:
    Erwin Lutwak
Rotation means of projections
  • DOI:
    10.1007/bf02785674
  • 发表时间:
    1987-06-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Erwin Lutwak
  • 通讯作者:
    Erwin Lutwak

Erwin Lutwak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erwin Lutwak', 18)}}的其他基金

Shape Discovery for Convex Bodies: Measures, Invariants, and Applications
凸体的形状发现:测量、不变量和应用
  • 批准号:
    2005875
  • 财政年份:
    2020
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Continuing Grant
Shape Discovery for Convex Bodies: Measures, Invariants, and Applications
凸体的形状发现:测量、不变量和应用
  • 批准号:
    1710450
  • 财政年份:
    2017
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Continuing Grant
Isoperimetric Inequalities
等周不等式
  • 批准号:
    1007347
  • 财政年份:
    2010
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Continuing Grant
Isoperimetric Inequalities
等周不等式
  • 批准号:
    0706859
  • 财政年份:
    2007
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Continuing Grant
Isoperimetric Inequalities
等周不等式
  • 批准号:
    0405707
  • 财政年份:
    2004
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Continuing Grant
Isoperimetric Inequalities
等周不等式
  • 批准号:
    0104363
  • 财政年份:
    2001
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Continuing Grant
Isoperimetric Inequalities
等周不等式
  • 批准号:
    9803261
  • 财政年份:
    1998
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Isoperimetric Inequalities
数学科学:等周不等式
  • 批准号:
    9507988
  • 财政年份:
    1995
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Isoperimetric Inequalities
数学科学:等周不等式
  • 批准号:
    9123571
  • 财政年份:
    1992
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Isoperimetric Inequalities
数学科学:等周不等式
  • 批准号:
    8902550
  • 财政年份:
    1989
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Continuing grant

相似海外基金

CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
  • 批准号:
    2340195
  • 财政年份:
    2024
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Continuing Grant
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
  • 批准号:
    2896389
  • 财政年份:
    2023
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Studentship
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
  • 批准号:
    2785744
  • 财政年份:
    2023
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Studentship
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
  • 批准号:
    RGPIN-2018-04443
  • 财政年份:
    2022
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Discovery Grants Program - Individual
Erdos-Ko-Rado type problems, Isoperimetric inequalities, and other topics in Combinatorics.
Erdos-Ko-Rado 类型问题、等周不等式以及组合学中的其他主题。
  • 批准号:
    2614845
  • 财政年份:
    2021
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Studentship
Erdos-Ko-Rado type problems, Isoperimetric inequalities, and other topics in Combinatorics.
Erdos-Ko-Rado 类型问题、等周不等式以及组合学中的其他主题。
  • 批准号:
    2611263
  • 财政年份:
    2021
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Studentship
Weighted isoperimetric inequalities and some applications
加权等周不等式和一些应用
  • 批准号:
    2525697
  • 财政年份:
    2021
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Studentship
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
  • 批准号:
    RGPIN-2018-04443
  • 财政年份:
    2021
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
  • 批准号:
    RGPIN-2018-04443
  • 财政年份:
    2020
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
  • 批准号:
    RGPIN-2018-04443
  • 财政年份:
    2019
  • 资助金额:
    $ 46.87万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了