Isoperimetric Inequalities

等周不等式

基本信息

  • 批准号:
    0405707
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0405707Principal Investigator: Erwin Lutwak, Deane Yang, Gaoyong ZhangThis project continues a long term program to develop extensionsand duals of the Brunn-Minkowski theory, which lies at the verycore of convex geometric analysis. This includes ongoinginvestigations of the partial differential equations that arisein these extensions. Generalizations of affine functionalsassociated with convex bodies are another central focus of theproposed work. A large part of the project concerns establishingsharp affine isoperimetric isoperimetric inequalities and relatedanalytic inequalities. The investigators will also continue theirefforts to understand better the connections between affineconvex geometric analysis and information theory.This project has potential for broader impact in many areas ofscience and engineering, because it deals with when and how canone reconstruct or approximate a geometric object from a limitednumber of geometric measurements. This is the central questionin many practical endeavors ranging from computer vision tomedical imaging. Some of the questions being studied by theinvestigators are sufficiently concrete that they can beexplained to and investigated by graduate, undergraduate, andeven high school students.
AbstractAward:DMS-0405707首席研究员:Erwin Lutwak,Deane Yang,Gaoyong Zhang该项目继续进行一项长期计划,以发展Brunn-Minkowski理论的扩展和扩展,该理论位于凸几何分析的核心。 这包括对这些扩展中出现的偏微分方程的持续研究。与凸体相关的仿射函数的推广是所提出的工作的另一个中心焦点。 本课题的主要内容是建立一类尖锐的仿射等周不等式和相关的解析不等式。研究人员还将继续他们的研究,以更好地理解仿射凸几何分析和信息论之间的联系。这个项目在科学和工程的许多领域具有更广泛的影响力,因为它涉及何时以及如何从有限数量的几何测量中重建或近似几何对象。 这是从计算机视觉到医学成像的许多实际工作中的中心问题。调查者正在研究的一些问题足够具体,可以向研究生、本科生甚至高中生解释并进行调查。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erwin Lutwak其他文献

A dual of the isepiphanic inequality
  • DOI:
    10.1007/bf01224661
  • 发表时间:
    1976-12-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Erwin Lutwak
  • 通讯作者:
    Erwin Lutwak
Rotation means of projections
  • DOI:
    10.1007/bf02785674
  • 发表时间:
    1987-06-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Erwin Lutwak
  • 通讯作者:
    Erwin Lutwak

Erwin Lutwak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erwin Lutwak', 18)}}的其他基金

Shape Discovery for Convex Bodies: Measures, Invariants, and Applications
凸体的形状发现:测量、不变量和应用
  • 批准号:
    2005875
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Shape Discovery for Convex Bodies: Measures, Invariants, and Applications
凸体的形状发现:测量、不变量和应用
  • 批准号:
    1710450
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Isoperimetric Inequalities
等周不等式
  • 批准号:
    1312181
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Isoperimetric Inequalities
等周不等式
  • 批准号:
    1007347
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Isoperimetric Inequalities
等周不等式
  • 批准号:
    0706859
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Isoperimetric Inequalities
等周不等式
  • 批准号:
    0104363
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Isoperimetric Inequalities
等周不等式
  • 批准号:
    9803261
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Isoperimetric Inequalities
数学科学:等周不等式
  • 批准号:
    9507988
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Isoperimetric Inequalities
数学科学:等周不等式
  • 批准号:
    9123571
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Isoperimetric Inequalities
数学科学:等周不等式
  • 批准号:
    8902550
  • 财政年份:
    1989
  • 资助金额:
    --
  • 项目类别:
    Continuing grant

相似海外基金

CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
  • 批准号:
    2340195
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
  • 批准号:
    2896389
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
  • 批准号:
    2785744
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
  • 批准号:
    RGPIN-2018-04443
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Erdos-Ko-Rado type problems, Isoperimetric inequalities, and other topics in Combinatorics.
Erdos-Ko-Rado 类型问题、等周不等式以及组合学中的其他主题。
  • 批准号:
    2614845
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Erdos-Ko-Rado type problems, Isoperimetric inequalities, and other topics in Combinatorics.
Erdos-Ko-Rado 类型问题、等周不等式以及组合学中的其他主题。
  • 批准号:
    2611263
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Weighted isoperimetric inequalities and some applications
加权等周不等式和一些应用
  • 批准号:
    2525697
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
  • 批准号:
    RGPIN-2018-04443
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
  • 批准号:
    RGPIN-2018-04443
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
  • 批准号:
    RGPIN-2018-04443
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了