Morse Index Bounds and Degeneration of Surfaces and Manifolds

莫尔斯索引界以及曲面和流形的退化

基本信息

  • 批准号:
    0104453
  • 负责人:
  • 金额:
    $ 25.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

Abstract for DMS - 0104453The goal of this project is to describe all embedded minimal surfaces of some fixed (but arbitrary) genus in a fixed (but arbitrary) closed 3-manifold. Such a study would include the description of these surfaces on a fixed small scale. Various applications of such a description will also be studied. In particular to the spherical space-form problem, the topology of 3-manifolds with positive scalar curvature and various other problems in the topology of 3-manifolds. Two other seperate projects will be investigated. One is simple closed geodesics on surfaces and another is degeneration of Kahler-Einstein manifolds.Roughly speaking the goal of this proposal is to describe all smooth soap-films. I soap-film is a surface spanning a boundary and which is critical for area among all other surfaces with the same boundary. Besides being a classical problem such a description would have many possible applications in a wide varieties of fields. Spanning from topology to mathematical biology.
DMS -0104453的摘要本项目的目标是描述固定(但任意)闭3-流形中某些固定(但任意)亏格的所有嵌入极小曲面。 这种研究将包括在一个固定的小尺度上描述这些表面。 还将研究这种描述的各种应用。 特别是球面空间形式问题,具有正数量曲率的三维流形的拓扑以及三维流形拓扑中的其他各种问题。 将对另外两个项目进行调查。 一个是曲面上的简单闭测地线,另一个是Kahler-Einstein流形的退化,粗略地说,这个建议的目标是描述所有光滑的肥皂膜。 I皂膜是跨越边界的表面,并且在具有相同边界的所有其他表面中对于面积是关键的。 除了是一个经典的问题,这样的描述将有许多可能的应用在各种各样的领域。 从拓扑学到数学生物学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tobias Colding其他文献

Tobias Colding的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tobias Colding', 18)}}的其他基金

Evolution equations in geometry and related fields
几何及相关领域的演化方程
  • 批准号:
    2104349
  • 财政年份:
    2021
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing Grant
Non-Compact Solutions to Geometric Flows
几何流的非紧解
  • 批准号:
    1811267
  • 财政年份:
    2018
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Evolutions Equations in Geometry
几何演化方程
  • 批准号:
    1812142
  • 财政年份:
    2018
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing Grant
Generic Flows, Ricci Curvature, Heegaard Splittings, and Nodal Sets
通用流、Ricci 曲率、Heegaard 分裂和节点集
  • 批准号:
    1404540
  • 财政年份:
    2015
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing Grant
Mean Curvature Flow, Manifolds with Ricci curvature bounds, Representations of Isometry groups, and Eigenfunctions
平均曲率流、具有 Ricci 曲率界限的流形、等距群的表示以及本征函数
  • 批准号:
    1104392
  • 财政年份:
    2011
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology
FRG:协作研究:平均曲率流作为低维拓扑的工具
  • 批准号:
    0854774
  • 财政年份:
    2009
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Geometric Analysis; Minimal Surfaces, Geometric Flows, and Function Theory
几何分析;
  • 批准号:
    0606629
  • 财政年份:
    2006
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing Grant
Regularity Results and Function Theory
正则性结果和函数理论
  • 批准号:
    9803253
  • 财政年份:
    1998
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Mathematical Sciences: "Manifolds with Ricci Curvature Bounds"
数学科学:“具有 Ricci 曲率界的流形”
  • 批准号:
    9504994
  • 财政年份:
    1995
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: Investigation of Stress Induced Birefringence and Refractive Index Changes in Glass for Fabricating Novel Optics
RII Track-4:NSF:用于制造新型光学器件的玻璃中应力引起的双折射和折射率变化的研究
  • 批准号:
    2327218
  • 财政年份:
    2024
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Computational Refractive Index Light-sheet Microscopy (CORILIM)
计算折射率光片显微镜 (CORILIM)
  • 批准号:
    MR/Y003977/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Fellowship
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
  • 批准号:
    24K06756
  • 财政年份:
    2024
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-nutritive sweetener consumption during pregnancy and child body mass index: can postnatal fibre consumption mitigate potential risks?
怀孕期间的非营养性甜味剂消费和儿童体重指数:产后纤维消费可以减轻潜在风险吗?
  • 批准号:
    488069
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Operating Grants
Does BMI miss the mark? Use of an abdominal obesity index in osteoarthritis
BMI 是否达标?
  • 批准号:
    499189
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Operating Grants
Development of physiological index on the stress tolerance and the analytical method of distribution of riparian trees
河岸树木抗逆生理指标的建立及分布分析方法
  • 批准号:
    23K04040
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application Studies of Attachment Index in Architectural Planning Research
依恋指数在建筑规划研究中的应用研究
  • 批准号:
    23H01577
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
IMPACT+ environmental Index Measures Promoting Assessment and Circular Transparency in fashion
IMPACT环境指数措施促进时尚界的评估和循环透明度
  • 批准号:
    NE/Y004035/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Research Grant
Hafnia-based platform for high-index visible and UV integrated photonics
基于 Hafnia 的高折射率可见光和紫外集成光子学平台
  • 批准号:
    2301389
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
  • 批准号:
    23K12970
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了