Non-Compact Solutions to Geometric Flows

几何流的非紧解

基本信息

  • 批准号:
    1811267
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Geometric flows are processes that evolve surfaces or higher-dimensional spaces by their curvatures. In particular, the flows considered in this project are differential equations that model how the shape of a geometric object changes as its area, volume, or some other geometric quantity decreases as rapidly as possible. For example, the surface area decreases most rapidly under the mean curvature flow (MCF), while the enclosed volume deceases most rapidly under the Gauss curvature flow (GCF). Due to these natural decreasing properties, as the flow becomes singular (i.e., the object develops folds, corners, or other points of high curvature) these evolutions often tend (under magnification) toward optimal shapes minimizing the corresponding energies such as area and volume. For example, a soap bubble is the shape of a rescaled singularity of the MCF. These energy minimizers appear not only in geometry, but also in economics and physics; for instance, optimal transport refers to a mapping from one area to another that minimizes an energy which is the total cost of resource allocation. Thus, studying singularity of the geometric flows sheds new insight on the?understanding of energy minimizers?in physics and economics.This project aims to understand the singularity of various geometric flows including the Gauss curvature flow (GCF), the mean curvature flow (MCF), and the Ricci flow (RF). For the MCF and the RF, the uniqueness of non-collapsed type II ancient solutions will be considered. For the GCF, the existence and the uniqueness of type II closed ancient solutions will be studied under suitable conditions.?Moreover, this project also examines the convergence to the translating solutions to the curve-shortening flow and the GCF.? Interior estimates, decay rate, and monotonicity formulas will be developed.?In addition, this project will also address optimal regularity and free boundary problems for the GCF and and other fully non-linear equations, including optimal transport and Monge-Ampere equations. This project will provide a method to utilize prescribed singularity conditions to obtain optimal regularity and free boundary regularity, in particular in free boundary problems that arise from quantitative economics and classical mechanics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何流是通过曲面或高维空间的曲率来演化曲面或高维空间的过程。 特别地,在这个项目中考虑的流动是微分方程,其模拟几何对象的形状如何随着其面积、体积或其他几何量尽可能快地减小而变化。例如,表面积在平均曲率流(MCF)下减小最快,而封闭体积在高斯曲率流(GCF)下减小最快。 由于这些自然减少的特性,当流动变得奇异时(即,物体产生折叠、拐角或其它高曲率点),这些演变通常(在放大下)趋向于最佳形状,从而最小化相应的能量,例如面积和体积。 例如,肥皂泡是MCF的重新缩放奇点的形状。这些能量最小化者不仅出现在几何学中,也出现在经济学和物理学中;例如,最优运输是指从一个区域到另一个区域的映射,最小化能量,这是资源分配的总成本。因此,研究几何流的奇异性,为研究几何流的性质提供了新的思路。对能量最小化的理解物理学和经济学。该项目旨在了解各种几何流的奇异性,包括高斯曲率流(GCF),平均曲率流(MCF)和里奇流(RF)。对于MCF和RF,将考虑非塌陷的II型古解的唯一性。在适当的条件下,研究了GCF的第II型闭古解的存在唯一性.此外,本项目还研究了曲线缩短流和GCF的翻译解决方案的收敛性。内部估计,衰减率和单调性公式将被开发。此外,该项目还将解决全球气候变化框架的最佳规则性和自由边界问题,以及其他完全非线性方程,包括最佳运输和蒙格-安培方程。该项目将提供一种方法,利用规定的奇异性条件,以获得最佳的正则性和自由边界正则性,特别是在自由边界问题,产生于定量经济学和经典力学。该奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tobias Colding其他文献

Tobias Colding的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tobias Colding', 18)}}的其他基金

Evolution equations in geometry and related fields
几何及相关领域的演化方程
  • 批准号:
    2104349
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Evolutions Equations in Geometry
几何演化方程
  • 批准号:
    1812142
  • 财政年份:
    2018
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Generic Flows, Ricci Curvature, Heegaard Splittings, and Nodal Sets
通用流、Ricci 曲率、Heegaard 分裂和节点集
  • 批准号:
    1404540
  • 财政年份:
    2015
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Mean Curvature Flow, Manifolds with Ricci curvature bounds, Representations of Isometry groups, and Eigenfunctions
平均曲率流、具有 Ricci 曲率界限的流形、等距群的表示以及本征函数
  • 批准号:
    1104392
  • 财政年份:
    2011
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology
FRG:协作研究:平均曲率流作为低维拓扑的工具
  • 批准号:
    0854774
  • 财政年份:
    2009
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Geometric Analysis; Minimal Surfaces, Geometric Flows, and Function Theory
几何分析;
  • 批准号:
    0606629
  • 财政年份:
    2006
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Morse Index Bounds and Degeneration of Surfaces and Manifolds
莫尔斯索引界以及曲面和流形的退化
  • 批准号:
    0104453
  • 财政年份:
    2001
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Regularity Results and Function Theory
正则性结果和函数理论
  • 批准号:
    9803253
  • 财政年份:
    1998
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Mathematical Sciences: "Manifolds with Ricci Curvature Bounds"
数学科学:“具有 Ricci 曲率界的流形”
  • 批准号:
    9504994
  • 财政年份:
    1995
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards compact and efficient nuclear reactors
迈向紧凑高效的核反应堆
  • 批准号:
    EP/Y022157/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
Ultra-compact Sub-mm Heterodyne Focal Plane Array Frontends for Radio Astronomical Observation
用于射电天文观测的超紧凑亚毫米外差焦平面阵列前端
  • 批准号:
    23K20871
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
  • 批准号:
    2412341
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Compact Optomechanical Seismic Sensors for LIGO
用于 LIGO 的紧凑型光机地震传感器
  • 批准号:
    2426360
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
CAREER: Novel Microplasmas for Highly Compact and Versatile RF Electronics
事业:用于高度紧凑和多功能射频电子器件的新型微等离子体
  • 批准号:
    2337815
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
PFI-TT: Compact, Coherent, Hydrophone Array Systems for Real-Time, Instantaneous, Wide-Area, Ocean Acoustic Monitoring from Wind Farms and Other Ocean Platforms
PFI-TT:紧凑、相干、水听器阵列系统,用于风电场和其他海洋平台的实时、瞬时、广域海洋声学监测
  • 批准号:
    2345791
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Compact Binary Formation With Gravitational Wave Observations
合作研究:通过引力波观测了解致密双星形成
  • 批准号:
    2307147
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
C*-simplicity of locally compact groups
C*-局部紧群的简性
  • 批准号:
    23KJ0560
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Testing alternative theories of gravity in strong gravitational field by searching for gravitational-wave polarization from compact binary coalescences
通过从致密双星聚结中寻找引力波偏振来测试强引力场中的替代引力理论
  • 批准号:
    22KJ1650
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了