FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology
FRG:协作研究:平均曲率流作为低维拓扑的工具
基本信息
- 批准号:0854774
- 负责人:
- 金额:$ 44.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal will address several fundamental open questions about mean curvature flow (MCF) of hypersurfaces of low dimensional manifolds and will introduce the MCF as a tool to address central questions in 3-manifold topology. In particular, the PI's will study regularity problems for the mean curvature flow, investigate the geometry and topology of ultra large volume 3-manifolds and use these results to attack the virtual Haken conjecture. Mean curvature flow as well as other curvature flows have been developed for their intrinsic beauty as well as their own intrinsic interest and their potential applications to other scientific fields, like mathematical finance and material science to model, for instance, option pricing, motion of grains in annealing metals, and crystal growths. Under the mean curvature flow, surfaces move in the direction where the surface area decreases the most, thus minimal surfaces remain static under the MCF. While key foundational results have been obtained, several of the most basic questions remain unanswered.
这项建议将解决关于低维流形的超曲面的平均曲率流(MCF)的几个基本公开问题,并将引入MCF作为解决三维流形拓扑中的中心问题的工具。特别是,PI将研究平均曲率流的正则性问题,研究超大体积三维流形的几何和拓扑,并利用这些结果来攻击虚拟Haken猜想。平均曲率流和其他曲率流是因为它们的内在美以及它们本身的内在趣味以及它们在其他科学领域的潜在应用而发展起来的,如数学金融和材料科学,以建模例如期权定价、退火金属中的颗粒运动和晶体生长。在平均曲率流下,曲面沿着曲面面积减小最大的方向移动,因此最小曲面在MCF下保持静止。虽然已经取得了关键的基础性成果,但仍有几个最基本的问题没有得到回答。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tobias Colding其他文献
Tobias Colding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tobias Colding', 18)}}的其他基金
Evolution equations in geometry and related fields
几何及相关领域的演化方程
- 批准号:
2104349 - 财政年份:2021
- 资助金额:
$ 44.93万 - 项目类别:
Continuing Grant
Non-Compact Solutions to Geometric Flows
几何流的非紧解
- 批准号:
1811267 - 财政年份:2018
- 资助金额:
$ 44.93万 - 项目类别:
Standard Grant
Generic Flows, Ricci Curvature, Heegaard Splittings, and Nodal Sets
通用流、Ricci 曲率、Heegaard 分裂和节点集
- 批准号:
1404540 - 财政年份:2015
- 资助金额:
$ 44.93万 - 项目类别:
Continuing Grant
Mean Curvature Flow, Manifolds with Ricci curvature bounds, Representations of Isometry groups, and Eigenfunctions
平均曲率流、具有 Ricci 曲率界限的流形、等距群的表示以及本征函数
- 批准号:
1104392 - 财政年份:2011
- 资助金额:
$ 44.93万 - 项目类别:
Continuing Grant
Geometric Analysis; Minimal Surfaces, Geometric Flows, and Function Theory
几何分析;
- 批准号:
0606629 - 财政年份:2006
- 资助金额:
$ 44.93万 - 项目类别:
Continuing Grant
Morse Index Bounds and Degeneration of Surfaces and Manifolds
莫尔斯索引界以及曲面和流形的退化
- 批准号:
0104453 - 财政年份:2001
- 资助金额:
$ 44.93万 - 项目类别:
Continuing Grant
Regularity Results and Function Theory
正则性结果和函数理论
- 批准号:
9803253 - 财政年份:1998
- 资助金额:
$ 44.93万 - 项目类别:
Standard Grant
Mathematical Sciences: "Manifolds with Ricci Curvature Bounds"
数学科学:“具有 Ricci 曲率界的流形”
- 批准号:
9504994 - 财政年份:1995
- 资助金额:
$ 44.93万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 44.93万 - 项目类别:
Continuing Grant