Evolutions Equations in Geometry

几何演化方程

基本信息

  • 批准号:
    1812142
  • 负责人:
  • 金额:
    $ 50.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Evolution equations are basic objects in the sciences, describing how natural phenomena change over time. For instance, the modeling of a wide class of physical phenomena, such as crystal growth and flame propagation, involves tracking fronts that move with curvature-dependent speed. When a surface evolves with speed that is proportional to the curvature, this results in one of the classic degenerate nonlinear differential equations called the mean curvature flow. For nonlinear equations like this, it is possible that solutions may develop sharp points and corners, so it is natural to ask "what is the regularity of solutions?'' Optimal regularity for mean curvature flow was recently proven by the PI and Minicozzi. The proof weaves together analysis and geometry. It is expected that many of the new ingredients and techniques should lead to many other results for a wide range of equations that the PI will investigate in this project.This project has two parts. The main part concerns geometric evolution equations, like mean curvature flow (MCF) and Ricci flow. It deals with optimal regularity and applications. The PI has, together with Minicozzi, settled a number of long-standing open problems and conjectures for mean curvature flow and expect that the results and ideas developed will have significant applications also to other flows and plan to pursue them. Rigidity of prevalent singularities and uniqueness of blow-ups has had a wide range of applications for mean curvature flow from optimal regularity of the level set equation to optimal estimates on the singular set of the flow. The PI plans on investigating similar conjectures for the Ricci flow. The second part of the project will deal with other (non-geometric) evolution equations that are motivated by questions in social science and engineering. One particular focus will be on a natural evolution equation that describes how the opinions of a group of people evolve as they are influenced by each other.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
演化方程是科学中的基本对象,描述自然现象如何随时间变化。 例如,对晶体生长和火焰传播等多种物理现象的建模涉及跟踪以曲率相关速度移动的前沿。当一个曲面以与曲率成比例的速度演化时,这导致一个经典的退化非线性微分方程,称为平均曲率流。 对于这样的非线性方程,解可能会形成尖锐的点和角,所以很自然地会问“解的正则性是什么?平均曲率流的最优规则性最近被PI和Minicozzi证明。 这个证明将分析和几何学结合在一起。预计许多新的成分和技术将导致PI将在本项目中研究的广泛方程的许多其他结果。主要是几何演化方程,如平均曲率流(MCF)和Ricci流。它涉及最优正则性和应用。 PI与Minicozzi一起解决了许多长期存在的平均曲率流的开放问题和问题,并期望开发的结果和想法也将对其他流有重要的应用,并计划继续进行。 普遍奇点的刚性和爆破的唯一性在平均曲率流中有着广泛的应用,从水平集方程的最优正则性到流的奇异集的最优估计。 PI计划研究Ricci流的类似结构。 该项目的第二部分将处理其他(非几何)的演化方程,这些方程是由社会科学和工程问题引起的。 一个特别的重点将是一个自然的进化方程,描述了一组人的意见如何演变,因为他们是相互影响的。这个奖项反映了NSF的法定使命,并已被认为是值得支持的,通过评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tobias Colding其他文献

Tobias Colding的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tobias Colding', 18)}}的其他基金

Evolution equations in geometry and related fields
几何及相关领域的演化方程
  • 批准号:
    2104349
  • 财政年份:
    2021
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Continuing Grant
Non-Compact Solutions to Geometric Flows
几何流的非紧解
  • 批准号:
    1811267
  • 财政年份:
    2018
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Standard Grant
Generic Flows, Ricci Curvature, Heegaard Splittings, and Nodal Sets
通用流、Ricci 曲率、Heegaard 分裂和节点集
  • 批准号:
    1404540
  • 财政年份:
    2015
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Continuing Grant
Mean Curvature Flow, Manifolds with Ricci curvature bounds, Representations of Isometry groups, and Eigenfunctions
平均曲率流、具有 Ricci 曲率界限的流形、等距群的表示以及本征函数
  • 批准号:
    1104392
  • 财政年份:
    2011
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology
FRG:协作研究:平均曲率流作为低维拓扑的工具
  • 批准号:
    0854774
  • 财政年份:
    2009
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Standard Grant
Geometric Analysis; Minimal Surfaces, Geometric Flows, and Function Theory
几何分析;
  • 批准号:
    0606629
  • 财政年份:
    2006
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Continuing Grant
Morse Index Bounds and Degeneration of Surfaces and Manifolds
莫尔斯索引界以及曲面和流形的退化
  • 批准号:
    0104453
  • 财政年份:
    2001
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Continuing Grant
Regularity Results and Function Theory
正则性结果和函数理论
  • 批准号:
    9803253
  • 财政年份:
    1998
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Standard Grant
Mathematical Sciences: "Manifolds with Ricci Curvature Bounds"
数学科学:“具有 Ricci 曲率界的流形”
  • 批准号:
    9504994
  • 财政年份:
    1995
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Standard Grant

相似海外基金

(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Standard Grant
Algebraic Geometry and Integrable Systems -- Moduli theory and Equations of Painleve type
代数几何与可积系统——模理论与Painleve型方程
  • 批准号:
    22H00094
  • 财政年份:
    2022
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
  • 批准号:
    2203607
  • 财政年份:
    2022
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Continuing Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
  • 批准号:
    2153846
  • 财政年份:
    2022
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Continuing Grant
Fully nonlinear equations in geometry and general relativity
几何和广义相对论中的完全非线性方程
  • 批准号:
    RGPIN-2020-06756
  • 财政年份:
    2022
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
  • 批准号:
    2231783
  • 财政年份:
    2022
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Continuing Grant
Microlocal Analysis and Monge-Ampère Type Equations in Geometry
几何中的微局域分析和 Monge-Ampère 型方程
  • 批准号:
    2204347
  • 财政年份:
    2022
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Standard Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
  • 批准号:
    2203273
  • 财政年份:
    2022
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Continuing Grant
Evolution equations in geometry and related fields
几何及相关领域的演化方程
  • 批准号:
    2104349
  • 财政年份:
    2021
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Continuing Grant
Study on local functional equations form representation theory and geometry
局部函数方程形式表示论与几何的研究
  • 批准号:
    21K03169
  • 财政年份:
    2021
  • 资助金额:
    $ 50.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了