Finite-Volume Methods for Hyperbolic Problems
双曲问题的有限体积方法
基本信息
- 批准号:0106511
- 负责人:
- 金额:$ 51.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal concerns the development of multidimensional high-resolution finite-volume methods for solving hyperbolic partial differential equations, the development of software implementing these methods, and the application of these methods to particular problems. These methods are implemented in the CLAWPACK software package, which is freely available on the web and allows students and researchers studying a wide range of phenomena to use the technology of high-resolution methods and adaptive mesh refinement. These algorithms and the software will be further developed and brought to bear on a wider variety of problems. Particular problems of interest include: further development of adaptive refinement base on a new tree-structured code; inclusion of Cartesian-grid techniques for complex geometries; development of a general methodology for solving hyperbolic equations on curved manifolds; and wave-propagation problems (e.g., elastodynamics) in heterogeneous material, including nonlinear problems with spatially-varying flux functions.A wide range of practical problems in science and engineering involve the propagation of waves or the transport of substances in fluid flow. Examples arise in problems as diverse as the study of ultrasound waves in human tissue, the transport of contaminants in groundwater or the atmosphere, and the study of gravitational waves arising from the collision of black holes. Mathematically all of these problems lead to similar sets of partial differential equations. Solving these equations numerically requires special techniques that can deal with discontinuous functions, since often either the coefficients describing the problem or the solution (or both) are discontinuous. Examples include discontinuities in material properties at the interface between tissue and bone in an ultrasound problem, or the shock waves that arise in most nonlinear wave-propagation problems. Over the past few decades, a powerful class of numerical methods has been developed for solving such problems that have been much more heavily used in some applications areas than others. A primary goal of this project is to facilitate the transfer of this technology to new areas. The software package CLAWPACK, developed by the P.I. and coworkers, is designed to make it relatively easy to for students to learn about these methods and for researchers to apply them. There are still numerous mathematical challenges that arise in applying these methods to new situations. Research will be conducted to further improve these methods as a variety of new applications are explored. The subjects covered in this proposal are fertile ground for graduate education in computational mathematics. The P.I. is actively involved in training students and postdocs at the University of Washington as well as at other institutions by hosting visiting graduate students. The P.I. has also taught several short courses elsewhere and developed lecture notes, textbooks, software, and other educational material based on this research.
这项建议涉及发展多维高分辨率有限体积法求解双曲型偏微分方程,开发软件实现这些方法,并将这些方法应用于特定的问题。这些方法在CLAWPACK软件包中实现,该软件包可在网络上免费获得,并允许学生和研究人员研究各种现象,以使用高分辨率方法和自适应网格细化技术。这些算法和软件将得到进一步发展,并将用于解决更广泛的问题。特别感兴趣的问题包括:基于新的树结构代码的自适应精化的进一步发展;复杂几何形状的笛卡尔网格技术的包含;用于求解弯曲流形上的双曲方程的一般方法的发展;以及波传播问题(例如,弹性动力学),包括具有空间变化通量函数的非线性问题。科学和工程中的广泛实际问题涉及波的传播或流体流动中物质的输运。例子出现在各种各样的问题中,如人体组织中的超声波研究,地下水或大气中污染物的传输,以及黑洞碰撞产生的引力波的研究。从数学上讲,所有这些问题都会导致类似的偏微分方程组。数值求解这些方程需要特殊的技术,可以处理不连续的函数,因为通常描述问题或解决方案(或两者)的系数是不连续的。例子包括超声问题中组织和骨骼之间界面处材料特性的不连续性,或大多数非线性波传播问题中出现的冲击波。在过去的几十年里,已经开发出了一类强大的数值方法来解决这些问题,这些问题在某些应用领域中的使用要比其他应用领域多得多。该项目的一个主要目标是促进将这一技术转移到新的领域。由P.I.和同事,旨在使学生更容易了解这些方法,并为研究人员应用它们。 在将这些方法应用于新情况时,仍然存在许多数学挑战。随着各种新应用的探索,将进行研究以进一步改进这些方法。这个建议所涵盖的主题是计算数学研究生教育的沃土。私家侦探通过接待访问研究生,积极参与华盛顿大学和其他机构的学生和博士后培训。私家侦探他还在其他地方教授了几门短期课程,并根据这项研究编写了讲义、教科书、软件和其他教育材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randall LeVeque其他文献
On the uniform power-boundedness of a family of matrices and the applications to one-leg and linear multistep methods
- DOI:
10.1007/bf01400914 - 发表时间:
1983-03-01 - 期刊:
- 影响因子:2.200
- 作者:
Germund Dahlquist;Huang Mingyou;Randall LeVeque - 通讯作者:
Randall LeVeque
Randall LeVeque的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randall LeVeque', 18)}}的其他基金
Conference on Foundations of Computational Mathematics
计算数学基础会议
- 批准号:
2001711 - 财政年份:2020
- 资助金额:
$ 51.63万 - 项目类别:
Standard Grant
Finite Volume Methods and Software for Hyperbolic Problems
双曲问题的有限体积方法和软件
- 批准号:
1216732 - 财政年份:2012
- 资助金额:
$ 51.63万 - 项目类别:
Standard Grant
GeoClaw Validation against the Great Tohoku Tsumani of 11 March 2011
针对 2011 年 3 月 11 日的 Great Tohoku Tsumani 的 GeoClaw 验证
- 批准号:
1137960 - 财政年份:2011
- 资助金额:
$ 51.63万 - 项目类别:
Standard Grant
Applied Mathematics Perspectives 2011
应用数学观点 2011
- 批准号:
1068117 - 财政年份:2011
- 资助金额:
$ 51.63万 - 项目类别:
Standard Grant
Finite Volume Methods and Software for Hyperbolic Problems
双曲问题的有限体积方法和软件
- 批准号:
0914942 - 财政年份:2009
- 资助金额:
$ 51.63万 - 项目类别:
Standard Grant
Finite Volume Methods for Hyperbolic Problems
双曲问题的有限体积方法
- 批准号:
0609661 - 财政年份:2006
- 资助金额:
$ 51.63万 - 项目类别:
Continuing Grant
Numerical Methods for Conservation Laws
守恒定律的数值方法
- 批准号:
9803442 - 财政年份:1998
- 资助金额:
$ 51.63万 - 项目类别:
Standard Grant
Mathematical Sciences: Immersed Interface Methods
数学科学:沉浸式接口方法
- 批准号:
9626645 - 财政年份:1996
- 资助金额:
$ 51.63万 - 项目类别:
Standard Grant
Mathematical Sciences: Numerical Methods & Conservation Laws
数学科学:数值方法
- 批准号:
9505021 - 财政年份:1995
- 资助金额:
$ 51.63万 - 项目类别:
Standard Grant
Mathematical Sciences: Immersed Interface Methods
数学科学:沉浸式接口方法
- 批准号:
9303404 - 财政年份:1993
- 资助金额:
$ 51.63万 - 项目类别:
Continuing Grant
相似海外基金
Improving Finite Volume Methods for Industrial CFD: Adaptation, Error Quantification, and Robust Convergence
改进工业 CFD 的有限体积方法:适应、误差量化和鲁棒收敛
- 批准号:
537052-2018 - 财政年份:2022
- 资助金额:
$ 51.63万 - 项目类别:
Collaborative Research and Development Grants
Adaptively Tuned High-Order Unstructured Finite-Volume Methods for Turbulent Flows
湍流的自适应调整高阶非结构化有限体积方法
- 批准号:
EP/W037092/1 - 财政年份:2022
- 资助金额:
$ 51.63万 - 项目类别:
Research Grant
Improving Finite Volume Methods for Industrial CFD: Adaptation, Error Quantification, and Robust Convergence
改进工业 CFD 的有限体积方法:适应、误差量化和鲁棒收敛
- 批准号:
537052-2018 - 财政年份:2021
- 资助金额:
$ 51.63万 - 项目类别:
Collaborative Research and Development Grants
Improving Finite Volume Methods for Industrial CFD: Adaptation, Error Quantification, and Robust Convergence
改进工业 CFD 的有限体积方法:适应、误差量化和鲁棒收敛
- 批准号:
537052-2018 - 财政年份:2020
- 资助金额:
$ 51.63万 - 项目类别:
Collaborative Research and Development Grants
Improving Finite Volume Methods for Industrial CFD: Adaptation, Error Quantification, and Robust Convergence
改进工业 CFD 的有限体积方法:适应、误差量化和鲁棒收敛
- 批准号:
537052-2018 - 财政年份:2019
- 资助金额:
$ 51.63万 - 项目类别:
Collaborative Research and Development Grants
Improvements to Unstructured Mesh Finite Volume Methods for CFD: Novel Adaptive Techniques and Improved Robustness
CFD 非结构化网格有限体积方法的改进:新颖的自适应技术和改进的鲁棒性
- 批准号:
487154-2015 - 财政年份:2018
- 资助金额:
$ 51.63万 - 项目类别:
Collaborative Research and Development Grants
Improvements to Unstructured Mesh Finite Volume Methods for CFD: Novel Adaptive Techniques and Improved Robustness
CFD 非结构化网格有限体积方法的改进:新颖的自适应技术和改进的鲁棒性
- 批准号:
487154-2015 - 财政年份:2017
- 资助金额:
$ 51.63万 - 项目类别:
Collaborative Research and Development Grants
Improvements to Unstructured Mesh Finite Volume Methods for CFD: Novel Adaptive Techniques and Improved Robustness
CFD 非结构化网格有限体积方法的改进:新颖的自适应技术和改进的鲁棒性
- 批准号:
487154-2015 - 财政年份:2016
- 资助金额:
$ 51.63万 - 项目类别:
Collaborative Research and Development Grants
Error control and stability improvements for unstructured mesh finite volume methods in computational fluid dynamics
计算流体动力学中非结构化网格有限体积方法的误差控制和稳定性改进
- 批准号:
431183-2012 - 财政年份:2014
- 资助金额:
$ 51.63万 - 项目类别:
Collaborative Research and Development Grants
Solution of physically-complex flows using parallel high-order finite-volume methods and hydrid solution-adaptive meshes
使用并行高阶有限体积方法和混合溶液自适应网格求解物理复杂流
- 批准号:
228130-2009 - 财政年份:2013
- 资助金额:
$ 51.63万 - 项目类别:
Discovery Grants Program - Individual