Mathematical Sciences: Immersed Interface Methods
数学科学:沉浸式接口方法
基本信息
- 批准号:9303404
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-08-15 至 1997-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9303404 LeVeque Many important practical problems lead to partial differential equations whose solutions have discontinuities or nonsmoothness across some interface. In solving these problems numerically, it is very convenient to use a uniform Cartesian grid in spite of the fact that the interface may cut between grid points. The investigator and his colleagues develop finite difference methods that aim to give highly accurate solutions at all grid points while maintaining the efficiency and ease of implementation of uniform grid methods. Several specific problems are studied in depth. One goal is to develop improved versions of Peskin's "immersed boundary method" for incompressible fluid dynamics in regions with complicated moving boundaries, such as blood flow in a beating heart. Hyperbolic wave equations with discontinuous coefficients arise in modeling the structure of the earth in seismic oil exploration. Other applications include porous media equations arising in oil reservoir simulation and groundwater transport, and multi-phase solidification problems. In modeling fluid motion near rigid boundaries, an additional problem arises in solving an ill-conditioned system of equations for the strength of discontinuities at the boundary. Iterative methods for solving such problems are studied. Simulating the behavior of complicated structures in the real world typically involves solving large systems of equations that cannot be solved exactly. Instead the solution must be approximated by numerical methods on high performance computers. The investigators study problems in which there is a boundary or interface that has a complicated shape and may be moving in time. Examples include the surface of a body of water or a bubble surrounded by fluid, the surface of a beating heart, or the boundary between oil and some fluid that is injected into the earth to force oil out of an oil field. In these examples the equations being solved model the flow o f some fluid. Another problem is to study the motion of the boundary between melting ice and the surrounding water, or between different phases of a substance more generally. In this case the equations model the conduction of heat. In oil exploration it is necessary to model the motion of seismic waves in the earth and the manner in which they reflect off interfaces between different kinds of rock deep within the earth. The goal of the project is to develop relatively simple methods that can be used to solve a wide variety of such problems with complicated boundaries or interfaces. ***
9303404 Leveque许多重要的实际问题导致偏微分方程解在某些界面上具有不连续性或非光滑性。在数值求解这些问题时,使用均匀的笛卡尔网格是非常方便的,尽管网格点之间的界面可能会被割断。这位研究人员和他的同事们开发了有限差分方法,旨在给出所有网格点的高精度解,同时保持均匀网格方法的效率和实施的简便性。对几个具体问题进行了深入研究。其中一个目标是开发佩斯金“浸没边界法”的改进版本,用于具有复杂运动边界的区域的不可压缩流体动力学,例如心脏跳动中的血液流动。在石油地震勘探中模拟地球结构时,会出现具有间断系数的双曲波动方程。其他应用包括在油藏模拟和地下水传输中产生的多孔介质方程,以及多相凝固问题。在模拟刚性边界附近的流体运动时,在求解边界上不连续强度的病态方程组时会出现一个额外的问题。研究了求解这类问题的迭代方法。模拟现实世界中复杂结构的行为通常涉及求解无法精确求解的大型方程组。取而代之的是,必须在高性能计算机上用数值方法来近似求解。研究人员研究的问题是,存在形状复杂且可能在时间上移动的边界或界面。例如,水体的表面或被流体包围的气泡的表面,跳动的心脏的表面,或者石油和一些注入地球以迫使石油离开油田的流体之间的边界。在这些例子中,所解的方程模拟了某些流体的流动。另一个问题是研究融化的冰和周围的水之间的边界的运动,或者更一般地研究物质的不同相之间的边界的运动。在这种情况下,这些方程模拟了热的传导。在石油勘探中,有必要模拟地震波在地球中的运动以及它们在地球深处不同类型岩石之间的界面上反射的方式。该项目的目标是开发相对简单的方法,可用于解决具有复杂边界或界面的各种此类问题。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randall LeVeque其他文献
On the uniform power-boundedness of a family of matrices and the applications to one-leg and linear multistep methods
- DOI:
10.1007/bf01400914 - 发表时间:
1983-03-01 - 期刊:
- 影响因子:2.200
- 作者:
Germund Dahlquist;Huang Mingyou;Randall LeVeque - 通讯作者:
Randall LeVeque
Randall LeVeque的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randall LeVeque', 18)}}的其他基金
Conference on Foundations of Computational Mathematics
计算数学基础会议
- 批准号:
2001711 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Finite Volume Methods and Software for Hyperbolic Problems
双曲问题的有限体积方法和软件
- 批准号:
1216732 - 财政年份:2012
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
GeoClaw Validation against the Great Tohoku Tsumani of 11 March 2011
针对 2011 年 3 月 11 日的 Great Tohoku Tsumani 的 GeoClaw 验证
- 批准号:
1137960 - 财政年份:2011
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Finite Volume Methods and Software for Hyperbolic Problems
双曲问题的有限体积方法和软件
- 批准号:
0914942 - 财政年份:2009
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Finite Volume Methods for Hyperbolic Problems
双曲问题的有限体积方法
- 批准号:
0609661 - 财政年份:2006
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Finite-Volume Methods for Hyperbolic Problems
双曲问题的有限体积方法
- 批准号:
0106511 - 财政年份:2001
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Mathematical Sciences: Immersed Interface Methods
数学科学:沉浸式接口方法
- 批准号:
9626645 - 财政年份:1996
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Mathematical Sciences: Numerical Methods & Conservation Laws
数学科学:数值方法
- 批准号:
9505021 - 财政年份:1995
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
- 批准号:
AH/Y007654/1 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
- 批准号:
EP/Z000467/1 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
- 批准号:
EP/Z000580/1 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Research Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Cooperative Agreement
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
- 批准号:
2349230 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
- 批准号:
2341900 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
- 批准号:
2342821 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
- 批准号:
2326751 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Meta-analysis for environmental sciences
环境科学荟萃分析
- 批准号:
NE/Y003721/1 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Training Grant