Development of Numerical Methods for Semiconductor Device Simulation and Electron Microscopy

半导体器件模拟和电子显微镜数值方法的发展

基本信息

  • 批准号:
    0106743
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

This study will focus on two numerical techniques for discontinuous problems and their physical applications. Particular attention will be paid to the development of a numerical method and its impact on refining the mathematical model of the physical system. Sharp gradients and discontinuities are characteristic of semiconductor device simulations. While numerical methods have been developed to handle these characteristics, these methods need to be refined and tailored to capture the features exhibited by carrier flow in semiconductor device simulations. On the other hand, the mathematical models that are used to describe carrier transport in semiconductors are constantly evaluated and changed. Steady-state weighted essentially non oscillatory methods will be refined and used to determine the validity of macroscopic models of current transport and deposition in semiconductor devices. Discontinuities are also a problem in the determination of protein structure by electron microscopy. The inherently discontinuous nature of physical structures, and the assumption that repetition of the structure in a gridlike formation is a periodic function leads to slow decay of the Fourier coefficients. Fourier coefficient extrapolation and Gegenbauer polynomial methods will be further developed and applied to the field of electron microscopy to achieve better resolution protein structures. This has the potential to be added to any electron microscopy software as a postprocessing step, and provide better resolution structures.Numerical methods for semiconductor device simulation models allow efficient and inexpensive simulation of the processes involved in semiconductor device production. However, these processes have many discontinuities that require sensitive numerical methods to capture the sharp changes in density and pressure without smearing them. Such methods, known as Weighted Essentially Non-Oscillatory methods, have been developed for use in similar problems, but are not efficient for the long time scales necessary for semiconductor simulations. The aim of this project is to further develop these numerical methods, and make them efficient for semiconductor device simulation on computers. Efficient numerical methods will also serve to compare different models, which attempt to describe the physical problem, and to evaluate which models best compare to reality. Another aspect of this project deals with the effects of discontinuities in protein structures studied by electron microscopy. Mathematical methods have been recently developed to solve the underlying problem by adding a smoothing step, which smoothes away numerical artifacts while keeping the real discontinuities. These methods have never been used on protein structures, and need to be tailored to it. These methods may improve the resolution of protein structures determined by electron microscopy.
本研究将集中于两种数值技术的不连续问题和它们的物理应用。将特别注意数值方法的发展及其对完善物理系统数学模型的影响。尖锐的梯度和不连续性是半导体器件模拟的特征。虽然已经开发了数值方法来处理这些特性,但这些方法需要进行改进和定制,以捕获半导体器件模拟中载流子流所表现出的特征。 另一方面,用于描述半导体中载流子输运的数学模型不断被评估和改变。 稳态加权基本上无振荡的方法将被完善,并用于确定在半导体器件中的电流传输和沉积的宏观模型的有效性。在用电子显微镜测定蛋白质结构时,不连续性也是一个问题。物理结构固有的不连续性质,以及网格状结构的重复是周期函数的假设导致傅立叶系数的缓慢衰减。傅立叶系数外推和Gegenbauer多项式方法将进一步发展和应用于电子显微镜领域,以实现更好的分辨率蛋白质结构。这有可能被添加到任何电子显微镜软件作为一个后处理步骤,并提供更好的分辨率structure.Numerical半导体器件模拟模型的方法允许在半导体器件生产过程中所涉及的高效和廉价的模拟。然而,这些过程有许多不连续性,需要敏感的数值方法来捕捉密度和压力的急剧变化,而不会模糊它们。这种方法,被称为加权基本非振荡方法,已开发用于类似的问题,但对于半导体模拟所需的长时间尺度是没有效率的。本项目的目的是进一步发展这些数值方法,使其有效的半导体器件的计算机模拟。有效的数值方法还将用于比较试图描述物理问题的不同模型,并评估哪些模型最符合实际。该项目的另一个方面涉及电子显微镜研究蛋白质结构中不连续性的影响。最近已经开发了数学方法,通过添加平滑步骤来解决潜在的问题,该平滑步骤在保持真实的不连续性的同时平滑掉数值伪影。这些方法从未在蛋白质结构上使用过,需要对其进行调整,这些方法可能会提高电子显微镜测定蛋白质结构的分辨率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sigal Gottlieb其他文献

Erratum to: Explicit Strong Stability Preserving Multistage Two-Derivative Time-Stepping Schemes
  • DOI:
    10.1007/s10915-016-0195-8
  • 发表时间:
    2016-03-23
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Andrew J. Christlieb;Sigal Gottlieb;Zachary Grant;David C. Seal
  • 通讯作者:
    David C. Seal
Preface to the Special Issue in Memory of Professor Saul Abarbanel
  • DOI:
    10.1007/s10915-019-01084-0
  • 发表时间:
    2019-11-11
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Alina Chertock;Adi Ditkowski;Anne Gelb;Sigal Gottlieb;Semyon Tsynkov
  • 通讯作者:
    Semyon Tsynkov
Modified Conjugate Gradient Method for the Solution of Ax=b
  • DOI:
    10.1023/a:1023222110984
  • 发表时间:
    1998-06-01
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Sigal Gottlieb;Paul F. Fischer
  • 通讯作者:
    Paul F. Fischer
Special Issue in Honor of Professor Chi-Wang Shu
  • DOI:
    10.1007/s10915-017-0566-9
  • 发表时间:
    2017-10-12
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Sigal Gottlieb;Johnny Guzmán;Fengyan Li;Jennifer K. Ryan
  • 通讯作者:
    Jennifer K. Ryan
Superconvergent discontinuous Galerkin method for the scalar Teukolsky equation on hyperboloidal domains: Efficient waveform and self-force computation
  • DOI:
    10.1007/s10714-025-03435-9
  • 发表时间:
    2025-06-27
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Manas Vishal;Scott E. Field;Sigal Gottlieb;Jennifer Ryan
  • 通讯作者:
    Jennifer Ryan

Sigal Gottlieb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sigal Gottlieb', 18)}}的其他基金

Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
  • 批准号:
    2309356
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
RUI: CSUMS: Research in Scientific Computing in Undergraduate Education (RESCUE)
RUI:CSUMS:本科教育科学计算研究(RESCUE)
  • 批准号:
    0802974
  • 财政年份:
    2008
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
RUI: Adaptive High-Order Methods for Solving PDEs
RUI:求解偏微分方程的自适应高阶方法
  • 批准号:
    0608844
  • 财政年份:
    2006
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
  • 批准号:
    23KJ0981
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of numerical methods for simulating quantum dynamics towards the control of quantum computers
开发用于模拟量子动力学以控制量子计算机的数值方法
  • 批准号:
    23K13042
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
  • 批准号:
    2208438
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Research and Development of Numerical Methods of Multiphysics and Multiscale Modeling for Emerging Technology Applications and Designs
新兴技术应用和设计的多物理场和多尺度建模数值方法的研究和开发
  • 批准号:
    RGPIN-2018-05364
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
  • 批准号:
    RGPIN-2017-05666
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
A novel development of optimization and deep learning methods based on the idea of structure-preserving numerical analysis
基于结构保持数值分析思想的优化和深度学习方法的新发展
  • 批准号:
    21H03452
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research and Development of Numerical Methods of Multiphysics and Multiscale Modeling for Emerging Technology Applications and Designs
新兴技术应用和设计的多物理场和多尺度建模数值方法的研究和开发
  • 批准号:
    RGPIN-2018-05364
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Development of wave-based numerical methods able to predict room acoustics at full audible ranges
开发基于波的数值方法,能够在整个可听范围内预测室内声学
  • 批准号:
    20K04806
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research and Development of Numerical Methods of Multiphysics and Multiscale Modeling for Emerging Technology Applications and Designs
新兴技术应用和设计的多物理场和多尺度建模数值方法的研究和开发
  • 批准号:
    RGPIN-2018-05364
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
  • 批准号:
    RGPIN-2017-05666
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了