CAREER: Realizing Derived Equivalences

职业:实现派生等价

基本信息

  • 批准号:
    0134938
  • 负责人:
  • 金额:
    $ 30.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2004-04-30
  • 项目状态:
    已结题

项目摘要

DMS-0134938Brooke E. ShipleyThe research component of this proposal involves several questions which fall into two overall projects. One project is to consider when an equivalence between derived categories is induced by a more richly structured equivalence. The goal here is to develop an obstruction theory for realizing derived equivalences by underlying structured equivalences. In particular, this may have applications to the question associated to Broue's Conjecture in representation theory of which stable equivalences lift to derived equivalences. The second project is to develop homotopy theoretic algebraic models. One piece of this project is to continue work with John Greenlees on algebraic models for rational equivariant cohomology theories. More generally, the investigator proposes to develop algebraic models for various stable homotopy theories. The proposed research projects involve the interplay beween the study of algebraic structures and topology, the study of shapes or spaces. Algebraic topologists use algebraic structures to describe and simplify topological phenomena. In a project onrealizing derived equivalences, the investigator hopes to use techniques developed in algebraic topology to attack questions which originate in algebra. These techniques include the use of a theory of obstructions, which determines whether certain constructions are possible. In another project the investigator plans on extending existing algebraic models to include structures involving symmetries. The educational component of this proposal also includes several parts. The investigator will be involved in the summer research programs for undergraduates at the University of Chicago and Purdue University. With Lucho Avramov, she will organize a workshop on topics related to derived categories of interest to a broad range of algebraically related fields. With Jim McClure and Guershon Harel, the investigator will develop a new course for mathematics education majors based on Euler's ``Elements of Algebra". The goals of this course are to help mathematical education students master skills in algebra, develop confidence for teaching algebra, and understand the motivation for material contained in a standard abstract algebra course. The investigator will also participate in several aspects of the Women in Science Program at Purdue University.
DMS-0134938Brooke E. Shipley 该提案的研究部分涉及几个属于两个总体项目的问题。 一个项目是考虑派生类别​​之间的等价何时由更丰富的结构等价引起。 这里的目标是发展一种阻碍理论,通过底层的结构化等价来实现派生等价。 特别是,这可能适用于与表示论中的布劳猜想相关的问题,其中稳定等价提升为派生等价。 第二个项目是开发同伦理论代数模型。 该项目的一部分是继续与 John Greenlees 合作研究有理等变上同调理论的代数模型。 更一般地说,研究者建议为各种稳定同伦理论开发代数模型。 拟议的研究项目涉及代数结构和拓扑研究、形状或空间研究之间的相互作用。 代数拓扑学家使用代数结构来描述和简化拓扑现象。 在实现派生等价的项目中,研究人员希望使用代数拓扑中开发的技术来解决源自代数的问题。 这些技术包括使用障碍物理论,该理论确定某些构造是否可行。 在另一个项目中,研究人员计划扩展现有的代数模型以包括涉及对称的结构。 该提案的教育部分还包括几个部分。 该研究人员将参与芝加哥大学和普渡大学本科生的夏季研究项目。 她将与 Lucho Avramov 一起组织一个研讨会,主题涉及广泛的代数相关领域的派生类别。 研究者将与 Jim McClure 和 Guershon Harel 一起,基于欧拉的《代数原理》为数学教育专业的学生开发一门新课程。该课程的目标是帮助数学教育学生掌握代数技能,培养代数教学的信心,并理解标准抽象代数课程中包含的材料的动机。研究者还将参与妇女参与科学计划的多个方面 普渡大学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brooke Shipley其他文献

Brooke Shipley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brooke Shipley', 18)}}的其他基金

International Conference on Equivariant Topology and Derived Algebra
等变拓扑与派生代数国际会议
  • 批准号:
    1901120
  • 财政年份:
    2019
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Standard Grant
Homotopical Coalgebras, Algebraic Models, and Realizing Derived Equivalences
同伦余代数、代数模型和实现导出等价
  • 批准号:
    1811278
  • 财政年份:
    2018
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Standard Grant
HOMOTOPICAL ALGEBRA: COALGEBRAS, DGAS, AND RATIONAL EQUIVARIANT SPECTRA
同伦代数:余代数、DGAS 和有理等变谱
  • 批准号:
    1406468
  • 财政年份:
    2014
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Standard Grant
ALGEBRAIC MODELS OF HOMOTOPY THEORIES AND HOMOTOPICAL MODELS OF ALGEBRA
同伦理论的代数模型和代数的同伦模型
  • 批准号:
    1104396
  • 财政年份:
    2011
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Standard Grant
Homotopical Group Theory and Topological Algebraic Geometry, June 2008
同伦群论和拓扑代数几何,2008 年 6 月
  • 批准号:
    0802491
  • 财政年份:
    2008
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Standard Grant
Ring Spectra, DGAs and Derived Equivalences
环谱、DGA 和导出的等价物
  • 批准号:
    0706877
  • 财政年份:
    2007
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Continuing Grant
CAREER: Realizing Derived Equivalences
职业:实现派生等价
  • 批准号:
    0417206
  • 财政年份:
    2003
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9508952
  • 财政年份:
    1995
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Fellowship Award

相似海外基金

Realizing Human Brain Stimulation of Deep Regions Based on Novel Personalized Electrical Computational Modelling
基于新型个性化电计算模型实现人脑深部刺激
  • 批准号:
    23K25176
  • 财政年份:
    2024
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Realizing Carbon Neutrality and Resource/Energy Self-sufficiency in Wastewater Treatment Plants by Integrating Three Functional Granular Sludges
通过整合三种功能的颗粒污泥实现污水处理厂的碳中和和资源/能源自给自足
  • 批准号:
    24H00767
  • 财政年份:
    2024
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Realizing High Temperature Exciton Condensates at Molecule/2D van der Waals Interfaces
在分子/2D 范德华界面实现高温激子凝聚
  • 批准号:
    2401141
  • 财政年份:
    2024
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Standard Grant
Exploration of edible ink materials for realizing near-infrared stealth printing for agricultural products
可食用墨水材料实现农产品近红外隐形印刷的探索
  • 批准号:
    23K18068
  • 财政年份:
    2023
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Realizing next generation light-material interactions via directional, collective photoluminescence and energy transport of surface-sensitive nanocrystals
职业:通过表面敏感纳米晶体的定向集体光致发光和能量传输实现下一代光-材料相互作用
  • 批准号:
    2240140
  • 财政年份:
    2023
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Continuing Grant
Realizing itinerant Rydberg models through distance-selective dissipation
通过距离选择性耗散实现流动里德伯模型
  • 批准号:
    516378631
  • 财政年份:
    2023
  • 资助金额:
    $ 30.48万
  • 项目类别:
    WBP Fellowship
Realizing dexterous grasping operations in Metaverses by presenting rolling and sliding tactile cues to three fingers
通过向三指呈现滚动和滑动的触觉提示,实现元宇宙中灵巧的抓取操作
  • 批准号:
    23H03432
  • 财政年份:
    2023
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Metal Oxide Heterostructure for Realizing Robust Molecular Discrimination
用于实现稳健分子辨别的金属氧化物异质结构
  • 批准号:
    23H00254
  • 财政年份:
    2023
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Tri-fair Biometrics: Realizing a fair biometric authentication system that satisfies the three requirements of biometrics
Tri-fair Biometrics:实现公平的生物识别认证系统,满足生物识别的三个要求
  • 批准号:
    23H03395
  • 财政年份:
    2023
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Realizing Alternative Cements with Chemical Kinetics: Tuned Mechanical–Chemical Properties of Cementitious Magnesium Silicate Hydrates by Multi-Scale Synthetic Control
职业:利用化学动力学实现替代水泥:通过多尺度合成控制调整胶凝硅酸镁水合物的机械和化学性能
  • 批准号:
    2342381
  • 财政年份:
    2023
  • 资助金额:
    $ 30.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了