HOMOTOPICAL ALGEBRA: COALGEBRAS, DGAS, AND RATIONAL EQUIVARIANT SPECTRA
同伦代数:余代数、DGAS 和有理等变谱
基本信息
- 批准号:1406468
- 负责人:
- 金额:$ 20.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research projects involve the interplay between the study of algebraic structures and topology, the study of shapes or spaces. Algebraic topologists use algebraic structures to describe and simplify topological phenomena. Spectra, which represent cohomology theories, are algebraic structures built out of topological spaces and hence are useful for translating from one field to the other. In one project, the PI and Greenlees develop algebraic models for certain types of spectra with symmetries that allow complete calculations. The PI continues to train graduate students and disseminate research results. In addition, the PI is involved with several organizations that promote the participation of women and underrepresented minorities in math and science. The PI continues to study when derived equivalences can be realized by underlying richly structured equivalences. Examples of this arise in the PI's long term project with John Greenlees of constructing algebraic models for rational G-equivariant spectra for compact Lie groups G. More specifically, the PI and Greenlees plan to extend their model for tori to provide an algebraic model for rational G-equivariant commutative and associative ring spectra. The PI and Kathryn Hess continue to develop the homotopical setting for coalgebras with motivations coming from Rognes' Hopf-Galois extensions of ring spectra and Hess' homotopical framework for descent. The PI and Birgit Richter are developing a simple algebraic model for homotopically commutative differential graded algebras.
研究项目涉及代数结构和拓扑学的研究之间的相互作用,形状或空间的研究。代数拓扑学家使用代数结构来描述和简化拓扑现象。 谱,代表上同调理论,是建立在拓扑空间之外的代数结构,因此对于从一个领域到另一个领域的转换是有用的。在一个项目中,PI和Greenlees为某些类型的对称光谱开发了代数模型,允许完整的计算。 PI继续培训研究生并传播研究成果。 此外,PI还参与了几个促进妇女和代表性不足的少数民族参与数学和科学的组织。PI继续研究何时可以通过基础的丰富结构的等同关系实现衍生的等同关系。这方面的例子出现在PI的长期项目与约翰Greenlees构建代数模型的合理G-等变谱紧凑李群G。更具体地说,PI和Greenlees计划扩展他们的环面模型,为有理G-等变交换和结合环谱提供一个代数模型。 PI和Kathryn Hess继续发展余代数的同伦设置,其动机来自罗涅的环谱的Hopf-Galois扩展和Hess的下降同伦框架。 PI和Birgit Richter正在为同伦交换微分分次代数开发一个简单的代数模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brooke Shipley其他文献
Brooke Shipley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brooke Shipley', 18)}}的其他基金
International Conference on Equivariant Topology and Derived Algebra
等变拓扑与派生代数国际会议
- 批准号:
1901120 - 财政年份:2019
- 资助金额:
$ 20.01万 - 项目类别:
Standard Grant
Homotopical Coalgebras, Algebraic Models, and Realizing Derived Equivalences
同伦余代数、代数模型和实现导出等价
- 批准号:
1811278 - 财政年份:2018
- 资助金额:
$ 20.01万 - 项目类别:
Standard Grant
ALGEBRAIC MODELS OF HOMOTOPY THEORIES AND HOMOTOPICAL MODELS OF ALGEBRA
同伦理论的代数模型和代数的同伦模型
- 批准号:
1104396 - 财政年份:2011
- 资助金额:
$ 20.01万 - 项目类别:
Standard Grant
Homotopical Group Theory and Topological Algebraic Geometry, June 2008
同伦群论和拓扑代数几何,2008 年 6 月
- 批准号:
0802491 - 财政年份:2008
- 资助金额:
$ 20.01万 - 项目类别:
Standard Grant
Ring Spectra, DGAs and Derived Equivalences
环谱、DGA 和导出的等价物
- 批准号:
0706877 - 财政年份:2007
- 资助金额:
$ 20.01万 - 项目类别:
Continuing Grant
CAREER: Realizing Derived Equivalences
职业:实现派生等价
- 批准号:
0417206 - 财政年份:2003
- 资助金额:
$ 20.01万 - 项目类别:
Continuing Grant
CAREER: Realizing Derived Equivalences
职业:实现派生等价
- 批准号:
0134938 - 财政年份:2002
- 资助金额:
$ 20.01万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9508952 - 财政年份:1995
- 资助金额:
$ 20.01万 - 项目类别:
Fellowship Award
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 20.01万 - 项目类别:
Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 20.01万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 20.01万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 20.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
- 批准号:
2342254 - 财政年份:2024
- 资助金额:
$ 20.01万 - 项目类别:
Continuing Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
- 批准号:
2337178 - 财政年份:2024
- 资助金额:
$ 20.01万 - 项目类别:
Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 20.01万 - 项目类别:
Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 20.01万 - 项目类别:
Standard Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
EP/Y030990/1 - 财政年份:2024
- 资助金额:
$ 20.01万 - 项目类别:
Research Grant














{{item.name}}会员




