L-functions: Zeros and Values
L 函数:零点和值
基本信息
- 批准号:0138597
- 负责人:
- 金额:$ 6.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-15 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator is studying the statistical properties of zeros and values ofL-functions in the context of random matrix theory. Random matrix models are being used to conjecture the full asymptotic expansion and analytic continuationfor the moments of L-functions, and to make predictions for the statistical behavior of ranks of elliptic curves. A C++ L-function class library along with a front end application is also being developed for computing zeros and values of L-functions. This software is being used by the investigator to numerically confirm the predictions being made, and will be released freely to the public as a much needed tool for studying L-functions. Many problems in number theory can be described in terms of the properties of so-called L-functions. These functions, which encode profound information about various number theoretic problems, have remained largely unyielding to mathematical analysis. Many deep problems in number theory would be solved if one could understand these functions in detail. Surprisingly, a seemingly unrelated field known as random matrix theory, a subject that originally arose in connection to experimental physics, has recently been found by number theorists and physicists alike to provide a framework in which to model the behavior of L-functions. This mysterious connection has been used successfully to make hitherto unimaginable predictions for the behavior of L-functions. The work in this proposal is concerned with exploring the connections between these two fields, number theory and random matrix theory. To assist in this project, the investigator is also preparing a software package, to be made freely available to the public, for numerically studying L-functions. This award is being cofunded by the Algebra, Number Theory, and Combinatorics Program, the Numeric, Symbolic, and Geometric Computation Program, and the Computational Mathematics Program.
The investigator is studying the statistical properties of zeros and values ofL-functions in the context of random matrix theory. Random matrix models are being used to conjecture the full asymptotic expansion and analytic continuationfor the moments of L-functions, and to make predictions for the statistical behavior of ranks of elliptic curves. A C++ L-function class library along with a front end application is also being developed for computing zeros and values of L-functions. This software is being used by the investigator to numerically confirm the predictions being made, and will be released freely to the public as a much needed tool for studying L-functions. Many problems in number theory can be described in terms of the properties of so-called L-functions. These functions, which encode profound information about various number theoretic problems, have remained largely unyielding to mathematical analysis. Many deep problems in number theory would be solved if one could understand these functions in detail. Surprisingly, a seemingly unrelated field known as random matrix theory, a subject that originally arose in connection to experimental physics, has recently been found by number theorists and physicists alike to provide a framework in which to model the behavior of L-functions. This mysterious connection has been used successfully to make hitherto unimaginable predictions for the behavior of L-functions. The work in this proposal is concerned with exploring the connections between these two fields, number theory and random matrix theory. To assist in this project, the investigator is also preparing a software package, to be made freely available to the public, for numerically studying L-functions. This award is being cofunded by the Algebra, Number Theory, and Combinatorics Program, the Numeric, Symbolic, and Geometric Computation Program, and the Computational Mathematics Program.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Rubinstein其他文献
Omnimatte: Associating Objects and Their Effects in Video
Omnimatte:关联视频中的对象及其效果
- DOI:
10.1109/cvpr46437.2021.00448 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Erika Lu;Forrester Cole;Tali Dekel;Andrew Zisserman;W. Freeman;Michael Rubinstein - 通讯作者:
Michael Rubinstein
Self-Growing Hydrogels Inspired by Biological Metabolism
受生物代谢启发的自生长水凝胶
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
印出井 努;松田 昂大;中島 祐;高橋 由葵子;Tatiana B. Kouznetsova;Michael Rubinstein;Stephen L. Craig;グン 剣萍;Tasuku Nakajima - 通讯作者:
Tasuku Nakajima
Rigorous Calculation of Free Energy Difference Between Open and Closed States of Adenylate Kinase from Explicit Solvent Molecular Dynamics
- DOI:
10.1016/j.bpj.2010.12.2252 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Pavel I. Zhuravlev;Davit A. Potoyan;Michael Rubinstein;Garegin A. Papoian - 通讯作者:
Garegin A. Papoian
Single photon emission computed tomography in seizure disorders.
单光子发射计算机断层扫描在癫痫症中的应用。
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:5.2
- 作者:
R. Denays;Michael Rubinstein;H. Ham;A. Piepsz;P. Noël - 通讯作者:
P. Noël
Dynamics of strongly entangled polymer systems: activated reptation
强缠结聚合物系统的动力学:激活的蠕动
- DOI:
10.1007/s100510050155 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
A. Semenov;Michael Rubinstein - 通讯作者:
Michael Rubinstein
Michael Rubinstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Rubinstein', 18)}}的其他基金
Dynamical Coupling Between Particles and Polymers
颗粒与聚合物之间的动态耦合
- 批准号:
1309892 - 财政年份:2013
- 资助金额:
$ 6.9万 - 项目类别:
Continuing Grant
Topological Interactions in Polymer Gels
聚合物凝胶中的拓扑相互作用
- 批准号:
0907515 - 财政年份:2009
- 资助金额:
$ 6.9万 - 项目类别:
Continuing Grant
Models of Autonomic Self-Healing of Reversible Networks
可逆网络的自主自愈模型
- 批准号:
0911588 - 财政年份:2009
- 资助金额:
$ 6.9万 - 项目类别:
Continuing Grant
Canadian Number Theory Association X Meeting
加拿大数论协会X会议
- 批准号:
0753794 - 财政年份:2008
- 资助金额:
$ 6.9万 - 项目类别:
Standard Grant
Molecular Model of Airway Surface Layer
气道表层分子模型
- 批准号:
0616925 - 财政年份:2006
- 资助金额:
$ 6.9万 - 项目类别:
Continuing Grant
Static and Dynamic Properties of Polymeric Systems with Strongly Interacting Groups
具有强相互作用基团的聚合物体系的静态和动态特性
- 批准号:
9696081 - 财政年份:1995
- 资助金额:
$ 6.9万 - 项目类别:
Standard Grant
Static and Dynamic Properties of Polymeric Systems with Strongly Interacting Groups
具有强相互作用基团的聚合物体系的静态和动态特性
- 批准号:
9409787 - 财政年份:1994
- 资助金额:
$ 6.9万 - 项目类别:
Standard Grant
相似海外基金
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 6.9万 - 项目类别:
Continuing Grant
Zeros of zeta functions and L-functions, and their relations to Goldbach's problem
zeta 函数和 L 函数的零点及其与哥德巴赫问题的关系
- 批准号:
22K13895 - 财政年份:2022
- 资助金额:
$ 6.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Low Lying Zeros of Hecke L-functions
Hecke L 函数的低位零点
- 批准号:
571883-2022 - 财政年份:2022
- 资助金额:
$ 6.9万 - 项目类别:
University Undergraduate Student Research Awards
Extensions to the study of low lying zeros of L-functions.
L 函数低点零点研究的扩展。
- 批准号:
569475-2022 - 财政年份:2022
- 资助金额:
$ 6.9万 - 项目类别:
Postgraduate Scholarships - Doctoral
The Distribution of Zeros of L-Functions and Related Questions
L-函数的零点分布及相关问题
- 批准号:
2101912 - 财政年份:2021
- 资助金额:
$ 6.9万 - 项目类别:
Standard Grant
A study of zeros in optical fields and the origins of spin in wave fields
光场零点和波场自旋起源的研究
- 批准号:
2444407 - 财政年份:2020
- 资助金额:
$ 6.9万 - 项目类别:
Studentship
Combinatorics, Complexity and Complex Zeros of Partition Functions
配分函数的组合、复杂性和复零点
- 批准号:
1855428 - 财政年份:2019
- 资助金额:
$ 6.9万 - 项目类别:
Standard Grant
Class Groups of Number Fields and Zeros of L-functions
L 函数的数域和零的类组
- 批准号:
1902193 - 财政年份:2019
- 资助金额:
$ 6.9万 - 项目类别:
Standard Grant
Low Zeros of L-functions
L 函数的低零点
- 批准号:
538461-2019 - 财政年份:2019
- 资助金额:
$ 6.9万 - 项目类别:
University Undergraduate Student Research Awards