Nonlinear Differential Equations, Mechanics and Bifurcation Conference, May 20-22, 2002, Durham, North Carolina
非线性微分方程、力学和分岔会议,2002 年 5 月 20-22 日,北卡罗来纳州达勒姆
基本信息
- 批准号:0138923
- 负责人:
- 金额:$ 1.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-05-01 至 2003-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NSF Award Abstract - DMS-0138923Mathematical Sciences: Nonlinear Differential Equations, Mechanics and BifurcationAbstract0138923 ShearerThis award supports U.S. participants in the conference on Nonlinear Differential Equations, Mechanics, and Bifurcation held at Duke University on May 20-22, 2002. The purpose of the conference is to explore connections between the fields of ordinary and partial differential equations, mechanics and bifurcation, and industrial mathematics, and to encourage the involvement of young mathematical scientists in these areas.The speakers include established leaders in these fields, as well as promising young mathematicians and scientists. The meeting is a collaboration between the Research Triangle universities of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill.The central theme of the conference is the role of nonlinearity in physical systems, especially elasticity, granular materials, and fluid flow. The interplay between experiments, modeling, theoretical mechanics, mathematical analysis, numerical simulation, and industrial design has proved particularly fruitful in recent years. This conference brings together scientists and mathematicians from all of these areas. The conference is designed to include lively discussion of the interplay between discoveries of new experimental phenomena, proposed mathematical models, theoretical developments and challenges, and corresponding innovations in numerical methods. Bifurcation and pattern formation are observed in experiments with solids, fluids and granular materials, and the mathematical techniques to analyze phenomena have grown quite sophisticated. This connection between experiment and theory, coupled to numerical simulation, occurs throughout the conference.
NSF奖摘要- DMS-0138923数学科学:非线性微分方程、力学和分叉摘要0138923剪切机该奖项支持参加2002年5月20-22日在杜克大学举行的非线性微分方程、力学和分叉会议的美国与会者。 会议的目的是探讨常微分方程和偏微分方程、力学和分叉以及工业数学领域之间的联系,并鼓励年轻数学科学家参与这些领域。演讲者包括这些领域的知名领导者,以及有前途的年轻数学家和科学家。 这次会议是杜克大学、北卡罗来纳州州立大学和北卡罗来纳州大学在查佩尔山的研究三角大学之间的合作。会议的中心主题是非线性在物理系统中的作用,特别是弹性、颗粒材料和流体流动。 近年来,实验、建模、理论力学、数学分析、数值模拟和工业设计之间的相互作用已被证明特别富有成效。这次会议汇集了来自所有这些领域的科学家和数学家。该会议旨在包括对新实验现象的发现,提出的数学模型,理论发展和挑战以及相应的数值方法创新之间的相互作用的热烈讨论。 在固体、流体和颗粒材料的实验中可以观察到分叉和图案的形成,并且分析现象的数学技术已经变得相当复杂。 这种实验与理论之间的联系,再加上数值模拟,贯穿整个会议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Shearer其他文献
Time-dependent solutions for particle-size segregation in shallow granular avalanches
浅粒状雪崩中粒径偏析的时间相关解
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
J. Gray;Michael Shearer;A. Thornton - 通讯作者:
A. Thornton
Left coronary artery biomechanics: a characterization study using fluid structure interaction simulations
- DOI:
10.1007/s10237-025-01974-3 - 发表时间:
2025-06-12 - 期刊:
- 影响因子:2.700
- 作者:
Marina Fandaros;Chloe Kwok;Zachary Wolf;Michael Shearer;Johnathan Scheiner;Yulee Li;J. Jane Cao;Wei Yin - 通讯作者:
Wei Yin
Loss of real characteristics for models of three-phase flow in a porous medium
- DOI:
10.1007/bf00179533 - 发表时间:
1989-10-01 - 期刊:
- 影响因子:2.600
- 作者:
Michael Shearer;John A. Trangenstein - 通讯作者:
John A. Trangenstein
1297 INTEGRATOR COMPLEX SUBUNIT 6/DELETED IN CANCER 1 INHIBITS GROWTH OF HUMAN ANDROGEN-INDEPENDENT PROSTATE CANCER CELLS BY ALTERING THE CELL CYCLE PROFILE AND WNT SIGNALING
- DOI:
10.1016/j.juro.2010.02.881 - 发表时间:
2010-04-01 - 期刊:
- 影响因子:
- 作者:
Jennifer Hirsch;Aline Wille;Margarete Schon;Christian Sell;Michael Shearer;Ilse Wieland;Thomas Nelius;Filleur Stephanie - 通讯作者:
Filleur Stephanie
The quasidynamic approximation in critical state plasticity
- DOI:
10.1007/bf01052974 - 发表时间:
1989-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Michael Shearer;David G. Schaeffer - 通讯作者:
David G. Schaeffer
Michael Shearer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Shearer', 18)}}的其他基金
Nonlinear Partial Differential Equations of Mechanics
力学非线性偏微分方程
- 批准号:
1812445 - 财政年份:2018
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Nonlinear Waves in Continuum Mechanics
连续介质力学中的非线性波
- 批准号:
1517291 - 财政年份:2015
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Dynamics of Thin Liquid Films: Mathematics and Experiments
FRG:合作研究:薄液膜动力学:数学和实验
- 批准号:
0968258 - 财政年份:2010
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Thin Layer Flow: Experiments, Modeling, and Analysis
薄层流:实验、建模和分析
- 批准号:
0604047 - 财政年份:2006
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Challenges in the Dynamics of Thin Films and Fluid Interfaces
FRG:协作研究:薄膜和流体界面动力学的新挑战
- 批准号:
0244491 - 财政年份:2003
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Physical, Mathematical and Engineering Problems in Slow Granular Flow
FRG:合作研究:慢颗粒流中的物理、数学和工程问题
- 批准号:
0244488 - 财政年份:2003
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Collaborative Research: Physical, Mathematical, and Engineering Problems in Slow Granular Flow
合作研究:慢速颗粒流中的物理、数学和工程问题
- 批准号:
0204578 - 财政年份:2002
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Collaborative Proposal: Focused Research Group on Fundamental Problems in the Dynamics of Thin Viscous Films and Fluid Interfaces
合作提案:粘性薄膜和流体界面动力学基本问题的重点研究小组
- 批准号:
0073841 - 财政年份:2000
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
Fundamental and Applied Problems in Granular Flows
粒状流的基本和应用问题
- 批准号:
9818900 - 财政年份:1998
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Multidimensional Problems in Dynamic Plasticity
数学科学:动态塑性的多维问题
- 批准号:
9504583 - 财政年份:1995
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
- 批准号:
EP/Y004663/2 - 财政年份:2024
- 资助金额:
$ 1.7万 - 项目类别:
Research Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
- 批准号:
2307097 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
- 批准号:
EP/Y004515/1 - 财政年份:2023
- 资助金额:
$ 1.7万 - 项目类别:
Research Grant