Mathematical Sciences: Multidimensional Problems in Dynamic Plasticity

数学科学:动态塑性的多维问题

基本信息

  • 批准号:
    9504583
  • 负责人:
  • 金额:
    $ 14.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-07-15 至 1998-09-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT: MULTIDIMENSIONAL PROBLEMS IN DYNAMIC PLASTICITY This interdisciplinary proposal addresses three broad scientific issues regarding the dynamics of granular flow: (1) instability, including pattern formation in the post-instability regime, (2) fluctuations, and (3) computation of granular flows with multiple scales. Current and planned experiments include: (a) constitutive tests using a biaxial apparatus with the capability of measuring the speed of sound and of continuously monitoring the deformation with x-rays, (b) further study of porosity waves, (c) experiments directed toward isolating the causes of the instabilities of shaken granular material, and (d) experiments probing various aspects of fluctuations in granular flow, including stress chains and 1/f noise. Based on the fact that the governing PDE of nonassociative plasticity become ill-posed at moderate strains, current analytical work seeks (a) to generalize previous one-dimensional work, driven by both mathematical considerations and the need to establish a sound theoretical framework for numerical simulations of two-and-three-dimensional phenomena and (b) to relate ill-posedness to various experimental phenomena such as porosity waves and shear banding. Related problems in metal plasticity are also being studied analytically. Numerical work includes both (a) continuum and (b) molecular-dynamics (MD) computations. The key effort in the former is to complete a code for simulating shear-band formation and propagation, especially in the biaxial test; this code includes front tracking and mesh refinement at the shear band. MD computations have the immediate goal of gathering quantitative information about fluctuations in granular flow, particularly the variation of such fluctuations with length scale. In the long range, it is planned to develop a hybrid code that solves continuum equations in regions where the solution is smooth and invokes MD in regions of rapid change. Many areas of applied engineer ing stand to benefit from progress on the fundamental questions addressed in this project, including (1) particle handling and transport, (2) soil mechanics, (3) materials forming, and (4) geotechnical engineering. The following elaborates on area (1). An estimated 40%, or $61 billion, of the value added by the chemical industry is linked to particle technology. A study by the Rand Corporation found that, because of inability to accurately predict powder behavior, solids-producing manufacturing plants performed on average at 63% of design capacity, compared to 84% for liquids-producing plants. In economic terms, this difference is staggering. (Regarding future competitiveness, the U.S. should note that Germany and Japan lead the world in particle-technology research.) Fundamental understanding of the flow of granular materials would help (a) in finding ways to control industrial problems and (b) in developing new, more efficient industrial processes. To illustrate (a): one of the difficulties of granular flow is that quite different behavior may result from apparently identical circumstances, especially when scale-up is involved (e.g., from laboratory-scale experiments to an industrial silo). Most existing theories attempt to describe the flow only in term of average quantities, ignoring deviations from these averages. The focus in this project on fluctuations and length scales offers the possibility of being able to predict, and design for, the full range of behavior of real materials-handling systems. To illustrate (b): the experiments in this project with shaken granular material have led to ideas for two planned applications for patents, one in obtaining uniform mixing of multi-sized particles and the other in exposing a large surface area to the surrounding gas (as in a fluidized bed but not requiring fluid flow). These applications are being explored in concert with researchers in industry.
摘要:动态塑性中的多维问题这个跨学科的提案解决了关于颗粒流动动力学的三个广泛的科学问题:(1)不稳定,包括不稳定后状态下的模式形成;(2)波动;(3)多尺度颗粒流动的计算。目前和计划进行的实验包括:(a)使用具有测量声速和用x射线连续监测变形能力的双轴装置进行本构试验,(b)进一步研究孔隙率波,(c)旨在分离振荡颗粒材料不稳定原因的实验,以及(d)探测颗粒流动波动的各个方面的实验,包括应力链和1/f噪声。基于非联想塑性的主导偏微分方程在中等应变下变得不适定这一事实,目前的分析工作寻求(a)在数学考虑和为二维和三维现象的数值模拟建立健全理论框架的需要的驱动下,概括以前的一维工作;(b)将不适定性与各种实验现象(如孔隙波和剪切带)联系起来。金属塑性的相关问题也在进行分析研究。数值工作包括(a)连续体和(b)分子动力学(MD)计算。前者的关键工作是完成模拟剪切带形成和传播的代码,特别是在双轴试验中;这个代码包括前跟踪和网格细化在剪切带。MD计算的直接目标是收集颗粒流动波动的定量信息,特别是这种波动随长度尺度的变化。从长远来看,计划开发一种混合代码,在解光滑的区域求解连续统方程,在快速变化的区域调用MD。应用工程的许多领域都将受益于本项目所解决的基本问题的进展,包括(1)颗粒处理和运输,(2)土力学,(3)材料成型,以及(4)岩土工程。下面详细阐述第(1)部分。据估计,化学工业增加值的40%,即610亿美元,与颗粒技术有关。兰德公司(Rand Corporation)的一项研究发现,由于无法准确预测粉末的性能,生产固体的制造工厂的平均产能利用率为63%,而生产液体的工厂的平均产能利用率为84%。从经济角度来看,这种差异是惊人的。(关于未来的竞争力,美国应该注意到德国和日本在粒子技术研究方面处于世界领先地位。)对颗粒物料流动的基本理解将有助于(a)找到控制工业问题的方法,(b)开发新的、更有效的工业工艺。为了说明(a):颗粒流动的困难之一是,在表面上相同的情况下,可能会产生完全不同的行为,特别是当涉及到放大时(例如,从实验室规模的实验到工业筒仓)。大多数现有的理论仅仅试图用平均量来描述流体,而忽略了这些平均量的偏差。该项目对波动和长度尺度的关注提供了能够预测和设计真实材料处理系统的全部行为的可能性。为了说明(b):在这个项目中,用摇晃过的颗粒材料进行的实验产生了两个计划申请专利的想法,一个是获得多尺寸颗粒的均匀混合,另一个是将大的表面积暴露给周围的气体(就像在流化床中一样,但不需要流体流动)。这些应用正在与工业界的研究人员共同探索。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Shearer其他文献

Time-dependent solutions for particle-size segregation in shallow granular avalanches
浅粒状雪崩中粒径偏析的时间相关解
Left coronary artery biomechanics: a characterization study using fluid structure interaction simulations
  • DOI:
    10.1007/s10237-025-01974-3
  • 发表时间:
    2025-06-12
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Marina Fandaros;Chloe Kwok;Zachary Wolf;Michael Shearer;Johnathan Scheiner;Yulee Li;J. Jane Cao;Wei Yin
  • 通讯作者:
    Wei Yin
Loss of real characteristics for models of three-phase flow in a porous medium
  • DOI:
    10.1007/bf00179533
  • 发表时间:
    1989-10-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael Shearer;John A. Trangenstein
  • 通讯作者:
    John A. Trangenstein
1297 INTEGRATOR COMPLEX SUBUNIT 6/DELETED IN CANCER 1 INHIBITS GROWTH OF HUMAN ANDROGEN-INDEPENDENT PROSTATE CANCER CELLS BY ALTERING THE CELL CYCLE PROFILE AND WNT SIGNALING
  • DOI:
    10.1016/j.juro.2010.02.881
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jennifer Hirsch;Aline Wille;Margarete Schon;Christian Sell;Michael Shearer;Ilse Wieland;Thomas Nelius;Filleur Stephanie
  • 通讯作者:
    Filleur Stephanie
The quasidynamic approximation in critical state plasticity

Michael Shearer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Shearer', 18)}}的其他基金

Nonlinear Partial Differential Equations of Mechanics
力学非线性偏微分方程
  • 批准号:
    1812445
  • 财政年份:
    2018
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Nonlinear Waves in Continuum Mechanics
连续介质力学中的非线性波
  • 批准号:
    1517291
  • 财政年份:
    2015
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Dynamics of Thin Liquid Films: Mathematics and Experiments
FRG:合作研究:薄液膜动力学:数学和实验
  • 批准号:
    0968258
  • 财政年份:
    2010
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Thin Layer Flow: Experiments, Modeling, and Analysis
薄层流:实验、建模和分析
  • 批准号:
    0604047
  • 财政年份:
    2006
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Challenges in the Dynamics of Thin Films and Fluid Interfaces
FRG:协作研究:薄膜和流体界面动力学的新挑战
  • 批准号:
    0244491
  • 财政年份:
    2003
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Physical, Mathematical and Engineering Problems in Slow Granular Flow
FRG:合作研究:慢颗粒流中的物理、数学和工程问题
  • 批准号:
    0244488
  • 财政年份:
    2003
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Nonlinear Differential Equations, Mechanics and Bifurcation Conference, May 20-22, 2002, Durham, North Carolina
非线性微分方程、力学和分岔会议,2002 年 5 月 20-22 日,北卡罗来纳州达勒姆
  • 批准号:
    0138923
  • 财政年份:
    2002
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Physical, Mathematical, and Engineering Problems in Slow Granular Flow
合作研究:慢速颗粒流中的物理、数学和工程问题
  • 批准号:
    0204578
  • 财政年份:
    2002
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Focused Research Group on Fundamental Problems in the Dynamics of Thin Viscous Films and Fluid Interfaces
合作提案:粘性薄膜和流体界面动力学基本问题的重点研究小组
  • 批准号:
    0073841
  • 财政年份:
    2000
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Continuing Grant
Fundamental and Applied Problems in Granular Flows
粒状流的基本和应用问题
  • 批准号:
    9818900
  • 财政年份:
    1998
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Global Optimization for Multidimensional Scaling
数学科学:多维尺度的全局优化
  • 批准号:
    9996010
  • 财政年份:
    1998
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Transition to Chaos in Multidimensional Hamiltonian Systems
数学科学:多维哈密顿系统中向混沌的转变
  • 批准号:
    9623216
  • 财政年份:
    1996
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Global Optimization for Multidimensional Scaling
数学科学:多维尺度的全局优化
  • 批准号:
    9622749
  • 财政年份:
    1996
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Multidimensional Problems in Dynamic Plasticity
数学科学:动态塑性的多维问题
  • 批准号:
    9504433
  • 财政年份:
    1995
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Multidimensional Problems in Dynamic Plasticity
数学科学:动态塑性的多维问题
  • 批准号:
    9504577
  • 财政年份:
    1995
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Complex Analysis and Geometry in Multidimensional Domains
数学科学:多维域中的复分析和几何
  • 批准号:
    9500916
  • 财政年份:
    1995
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Analytical Aspects of Multidimensional Inverse Scattering
数学科学:多维逆散射的分析方面
  • 批准号:
    9496154
  • 财政年份:
    1993
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Singular and Boundary Control of Multidimensional Diffusion Processes
数学科学:多维扩散过程的奇异和边界控制
  • 批准号:
    9301200
  • 财政年份:
    1993
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Multidimensional Inverse Scattering Problems
数学科学:多维逆散射问题
  • 批准号:
    9217627
  • 财政年份:
    1992
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analytical Aspects of Multidimensional Inverse Scattering
数学科学:多维逆散射的分析方面
  • 批准号:
    9206926
  • 财政年份:
    1992
  • 资助金额:
    $ 14.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了