Nonlinear Partial Differential Equations of Mechanics

力学非线性偏微分方程

基本信息

  • 批准号:
    1812445
  • 负责人:
  • 金额:
    $ 29.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

This project concerns research into mathematical models of physical systems, such as the dynamics of avalanches, motion of water waves, the underground flow of fluids, and the motion of small liquid drops on a gel. The models are chosen for their novel mathematical interest, and for the physical relevance of the system. Part of the research, notably granular avalanches and droplets, relates the mathematics to physical experiments. Applications contained in this project include carbon sequestration, a means of storing the greenhouse gas carbon dioxide in liquid form in deep underground salt water aquifers; the motion of cells in biology by a process called durotaxis; the formulation of models of granular materials such as soils, agricultural bulk grains, pharmaceutical materials. The mathematical challenge is to find models that facilitate the stable representation of granular flow, for example in draining a grain bin and hopper avoiding failure of the containing structure. The research in this project on nonlinear partial differential equations concerns properties of the equations modeling a variety of applications in mechanics. One aspect is to explore fundamental properties of dispersive equations, generalizations of the KdV equation, via the Whitham equations. The interest here is in equations for which the Whitham system fails to be hyperbolic, or for which the nonlinearity is degenerate, on hypersurfaces. Numerical simulations exhibit a range of nonlinear wave interactions that will be explored analytically. Novel models of flow in porous media and gravity currents in carbon sequestration exhibit unusual effects that were recently explored in student projects. The next steps aim to establish the rigorous mathematics behind these wave effects. Research on granular materials will build on a recent breakthrough in our understanding of how to formulate continuum models for which the time dependent equations are well-posed. This has been a problem in the field for at least thirty years. The continuing research will specify constitutive laws in the new framework and test them against prototype special flows, in numerical simulations, molecular dynamics representations and physical experiments. Finally, a student project on the motion of droplets in durotaxis has made progress on the corresponding static problem and is ready to move onto dynamics, in which the droplet surfs a ridge created through deformation of the underlying flexible substrate. This project is proceeding in tandem with physical experiments on contact lines and surface tension, at the interfaces between water, a gel, and air.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及研究物理系统的数学模型,如雪崩的动力学,水波的运动,地下流体的流动,以及凝胶上小液滴的运动。选择这些模型是因为它们新颖的数学兴趣,以及系统的物理相关性。部分研究,特别是颗粒雪崩和液滴,将数学与物理实验联系起来。该项目所包含的应用包括碳封存,这是一种将温室气体二氧化碳以液体形式储存在地下深层盐水含水层中的方法;通过称为durotaxis的过程进行生物细胞的运动;制定土壤,农业散装谷物,制药材料等颗粒材料的模型。数学上的挑战是要找到模型,促进稳定的颗粒流的表示,例如在排水的粮仓和料斗避免失败的容纳结构。 本计画研究非线性偏微分方程,其性质可应用于各种力学上。一方面是探讨色散方程的基本性质,推广的KdV方程,通过Whitham方程。这里的兴趣是在方程的Whitham系统未能双曲,或其中的非线性退化,超曲面。数值模拟展示了一系列的非线性波的相互作用,将探讨分析。多孔介质中的流动和碳封存中的重力流的新模型表现出最近在学生项目中探索的不寻常的效果。接下来的步骤旨在建立这些波效应背后的严格数学。颗粒材料的研究将建立在最近的突破,我们的理解,如何制定连续模型的时间依赖方程是适定的。这个问题在这个领域已经存在了至少30年。继续进行的研究将在新的框架中规定本构律,并在数值模拟、分子动力学表示和物理实验中对照原型特殊流动对其进行测试。最后,一个关于硬旋转中液滴运动的学生项目在相应的静态问题上取得了进展,并准备转向动态,其中液滴通过底层柔性基底的变形而形成的脊冲浪。该项目与水、凝胶和空气界面上的接触线和表面张力的物理实验同时进行。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constitutive relations for compressible granular flow in the inertial regime
  • DOI:
    10.1017/jfm.2019.476
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    D. Schaeffer;T. Barker;D. Tsuji;P. Gremaud;M. Shearer;J. Gray
  • 通讯作者:
    D. Schaeffer;T. Barker;D. Tsuji;P. Gremaud;M. Shearer;J. Gray
Gradient-induced droplet motion over soft solids
  • DOI:
    10.1093/imamat/hxaa015
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Bardall, Aaron;Chen, Shih-Yuan;Shearer, Michael
  • 通讯作者:
    Shearer, Michael
Distinguishing deformation mechanisms in elastocapillary experiments
区分弹性毛细管实验中的变形机制
  • DOI:
    10.1039/c9sm01756a
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Chen, Shih-Yuan;Bardall, Aaron;Shearer, Michael;Daniels, Karen E.
  • 通讯作者:
    Daniels, Karen E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Shearer其他文献

Time-dependent solutions for particle-size segregation in shallow granular avalanches
浅粒状雪崩中粒径偏析的时间相关解
Left coronary artery biomechanics: a characterization study using fluid structure interaction simulations
  • DOI:
    10.1007/s10237-025-01974-3
  • 发表时间:
    2025-06-12
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Marina Fandaros;Chloe Kwok;Zachary Wolf;Michael Shearer;Johnathan Scheiner;Yulee Li;J. Jane Cao;Wei Yin
  • 通讯作者:
    Wei Yin
Loss of real characteristics for models of three-phase flow in a porous medium
  • DOI:
    10.1007/bf00179533
  • 发表时间:
    1989-10-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael Shearer;John A. Trangenstein
  • 通讯作者:
    John A. Trangenstein
1297 INTEGRATOR COMPLEX SUBUNIT 6/DELETED IN CANCER 1 INHIBITS GROWTH OF HUMAN ANDROGEN-INDEPENDENT PROSTATE CANCER CELLS BY ALTERING THE CELL CYCLE PROFILE AND WNT SIGNALING
  • DOI:
    10.1016/j.juro.2010.02.881
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jennifer Hirsch;Aline Wille;Margarete Schon;Christian Sell;Michael Shearer;Ilse Wieland;Thomas Nelius;Filleur Stephanie
  • 通讯作者:
    Filleur Stephanie
The quasidynamic approximation in critical state plasticity

Michael Shearer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Shearer', 18)}}的其他基金

Nonlinear Waves in Continuum Mechanics
连续介质力学中的非线性波
  • 批准号:
    1517291
  • 财政年份:
    2015
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Dynamics of Thin Liquid Films: Mathematics and Experiments
FRG:合作研究:薄液膜动力学:数学和实验
  • 批准号:
    0968258
  • 财政年份:
    2010
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Thin Layer Flow: Experiments, Modeling, and Analysis
薄层流:实验、建模和分析
  • 批准号:
    0604047
  • 财政年份:
    2006
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Challenges in the Dynamics of Thin Films and Fluid Interfaces
FRG:协作研究:薄膜和流体界面动力学的新挑战
  • 批准号:
    0244491
  • 财政年份:
    2003
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Physical, Mathematical and Engineering Problems in Slow Granular Flow
FRG:合作研究:慢颗粒流中的物理、数学和工程问题
  • 批准号:
    0244488
  • 财政年份:
    2003
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Nonlinear Differential Equations, Mechanics and Bifurcation Conference, May 20-22, 2002, Durham, North Carolina
非线性微分方程、力学和分岔会议,2002 年 5 月 20-22 日,北卡罗来纳州达勒姆
  • 批准号:
    0138923
  • 财政年份:
    2002
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Physical, Mathematical, and Engineering Problems in Slow Granular Flow
合作研究:慢速颗粒流中的物理、数学和工程问题
  • 批准号:
    0204578
  • 财政年份:
    2002
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Focused Research Group on Fundamental Problems in the Dynamics of Thin Viscous Films and Fluid Interfaces
合作提案:粘性薄膜和流体界面动力学基本问题的重点研究小组
  • 批准号:
    0073841
  • 财政年份:
    2000
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant
Fundamental and Applied Problems in Granular Flows
粒状流的基本和应用问题
  • 批准号:
    9818900
  • 财政年份:
    1998
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Multidimensional Problems in Dynamic Plasticity
数学科学:动态塑性的多维问题
  • 批准号:
    9504583
  • 财政年份:
    1995
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
  • 批准号:
    41664001
  • 批准年份:
    2016
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
  • 批准号:
    61402377
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
  • 批准号:
    11261019
  • 批准年份:
    2012
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
  • 批准号:
    23K03165
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
  • 批准号:
    2247027
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
  • 批准号:
    2307097
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2318032
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear partial differential equations in heterogeneous frameworks
异构框架中的非线性偏微分方程
  • 批准号:
    RGPIN-2017-04313
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Discovery Grants Program - Individual
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2206675
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了