Wavelet Frames and Bases, and Fourth Order "thin film" Eigenproblems
小波框架和基,以及四阶“薄膜”本征问题
基本信息
- 批准号:0140481
- 负责人:
- 金额:$ 11.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Number: DMS-0140481PI: Richard LaugesenABSTRACTWavelet expansions are a mathematical tool that enablefunctions and data to be analyzed at multiple scales andlocations simultaneously. The investigator seeks first tocharacterize all (non-tight) wavelet frames - these framespermit more flexibility than the widely-used orthonormalwavelets. Then he aims to characterize and find examplesof wavelets whose dilation matrices expand in some directionsbut not in others. Another goal is to prove that the"Mexican hat" wavelet family is dense in all Lebesgue spaces,so that this family can be used to approximate data in morethan just the mean-square sense. On a different topic, theinvestigator will also pursue questions about the fundamentalmodel equations that underlie motion of thin fluid films. Theproposed research aims to mathematically determine thestability of steady states of these equations. In particular,"droplet" steady states will be studied. The existence of suchstable steady states would signal the possibility of creatinga pattern in the film.Wavelet theory draws on fundamental mathematics and onengineering disciplines such as signal processing to createtools for efficiently analyzing and storing information.The two-way street between basic research and practicalapplications has been particularly effective in recent years.Abstract mathematical theories from harmonic analysis havebeen transformed into large scale engineering solutions (forexample the FBI uses a wavelet compression technique to storeits fingerprint images), while engineering challenges continueto stimulate fundamental research in mathematics. Manyquestions about the mathematical equations of fluid flow arefamously difficult. In view of this difficulty, much researchhas concentrated on special situations, such as a thin film offluid either sitting on or hanging from a flat surface. Thesefilms arise in many industrial coating situations, such as themanufacture of photographic film, or the coating of magneticdisk drives. The mathematical understanding of these problemsbecame substantial only in the 1990s, and even now, much moreis known in one space dimension than in the physically relevantcase of two space dimensions, where this research willconcentrate.
提案编号:摘要小波展开是一种数学工具,可以同时在多个尺度和位置上分析函数和数据。研究人员首先试图刻画所有(非紧)小波框架-这些framespermit更多的灵活性比广泛使用的orthonormal小波。然后,他的目标是表征和找到例子的小波,其伸缩矩阵扩大在某些方向,但不是在其他。另一个目标是证明“墨西哥帽”小波族在所有Lebesgue空间中都是稠密的,这样这个小波族就可以用来近似数据,而不仅仅是在均方意义上。在另一个不同的主题,调查员也将追求的基本模型方程,薄流体膜运动的基础问题。所提出的研究旨在从数学上确定这些方程稳态的稳定性。特别是,“液滴”的稳定状态将进行研究。这种稳定的稳态的存在表明了在电影中创造一种模式的可能性。小波理论借鉴了基础数学和工程学科,如信号处理,以建立有效分析和存储信息的工具。这两个理论是:近年来,基础研究和实际应用之间的一条通道特别有效,从谐波分析的抽象数学理论已经转化为大规模的工程解决方案(例如,联邦调查局使用小波压缩技术来存储其指纹图像),而工程挑战继续刺激数学基础研究。关于流体流动的数学方程的许多问题是出了名的难。鉴于这一困难,许多研究都集中在特殊情况下,如薄膜offluid无论是坐在或悬挂在一个平面。这些薄膜出现在许多工业涂层的情况下,如照相胶片的制造,或磁盘驱动器的涂层。对这些问题的数学理解直到20世纪90年代才变得实质性,即使是现在,在一维空间中所知的也比在物理相关的二维空间中所知的要多得多,而二维空间是本研究的重点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Laugesen其他文献
Richard Laugesen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Laugesen', 18)}}的其他基金
Spectral Shape Optimization: Extremality and Curvature
谱形优化:极值和曲率
- 批准号:
2246537 - 财政年份:2023
- 资助金额:
$ 11.09万 - 项目类别:
Standard Grant
Collaborative Research: Internship Network in the Mathematical Sciences
合作研究:数学科学实习网络
- 批准号:
2015431 - 财政年份:2020
- 资助金额:
$ 11.09万 - 项目类别:
Continuing Grant
Special Meeting: Illinois/Missouri Applied Harmonic Analysis Seminars
特别会议:伊利诺伊州/密苏里州应用谐波分析研讨会
- 批准号:
0751046 - 财政年份:2008
- 资助金额:
$ 11.09万 - 项目类别:
Standard Grant
Eigenvalues for Vibrating Plates and for Thin Film Equations
振动板和薄膜方程的特征值
- 批准号:
9970228 - 财政年份:1999
- 资助金额:
$ 11.09万 - 项目类别:
Standard Grant
Mathematical Sciences: Extremal Problems for Eigenvalues, Heat Kernels and Energies
数学科学:特征值、热核和能量的极值问题
- 批准号:
9896042 - 财政年份:1997
- 资助金额:
$ 11.09万 - 项目类别:
Standard Grant
Mathematical Sciences: Extremal Problems for Eigenvalues, Heat Kernels and Energies
数学科学:特征值、热核和能量的极值问题
- 批准号:
9622837 - 财政年份:1996
- 资助金额:
$ 11.09万 - 项目类别:
Standard Grant
Mathematical Sciences: Isoperimetric and Symmetrization Problems
数学科学:等周和对称化问题
- 批准号:
9414149 - 财政年份:1994
- 资助金额:
$ 11.09万 - 项目类别:
Standard Grant
相似海外基金
Analysis and design of building frames using machine learning considering uncertainty of parameters
考虑参数不确定性的利用机器学习的建筑框架分析与设计
- 批准号:
23K04104 - 财政年份:2023
- 资助金额:
$ 11.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rapid evaluation of structural soundness of steel frames using a coupling coefficient (CC)-based method
使用基于耦合系数 (CC) 的方法快速评估钢框架的结构稳定性
- 批准号:
22KF0221 - 财政年份:2023
- 资助金额:
$ 11.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Analysis, Design and System-Level Performance of Repairable Precast Concrete Buckling-Restrained Braced Frames under Seismic Loads
地震荷载下可修复预制混凝土屈曲约束支撑框架的分析、设计和系统级性能
- 批准号:
2230187 - 财政年份:2023
- 资助金额:
$ 11.09万 - 项目类别:
Standard Grant
Quantum mechanics in rotating reference frames
旋转参考系中的量子力学
- 批准号:
2888161 - 财政年份:2023
- 资助金额:
$ 11.09万 - 项目类别:
Studentship
Investigation of torsional performance characteristics of unreinforced masonry infill walls in reinforced concrete frames
钢筋混凝土框架内无筋砌体填充墙扭转性能特性研究
- 批准号:
23K13440 - 财政年份:2023
- 资助金额:
$ 11.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Construction of design methodology for flexible legged locomotion robots based on optimal fusion of rigid body frames and viscoelastic elements
基于刚体框架与粘弹性元件优化融合的柔性足式运动机器人设计方法构建
- 批准号:
23K03727 - 财政年份:2023
- 资助金额:
$ 11.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Therapeutic rescue of Polycystin-1 protein expression by targeting PKD1 upstream open reading frames
通过靶向 PKD1 上游开放阅读框来治疗性挽救 Polycystin-1 蛋白表达
- 批准号:
10575251 - 财政年份:2023
- 资助金额:
$ 11.09万 - 项目类别:
Poxvirus-encoded noncanonical open reading frames
痘病毒编码的非规范开放阅读框
- 批准号:
10725671 - 财政年份:2023
- 资助金额:
$ 11.09万 - 项目类别:
Trajectories of Anti-Poverty Movements Mapped from Frames and Coalitions -Social Movement Research on Policy Output-
从框架和联盟映射反贫困运动的轨迹 -政策输出的社会运动研究-
- 批准号:
22KJ1011 - 财政年份:2023
- 资助金额:
$ 11.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Frames as dictionaries in inverse problems: Recovery guarantees for structured sparsity, unstructured environments, and symmetry-group identification
逆问题中的框架作为字典:结构化稀疏性、非结构化环境和对称群识别的恢复保证
- 批准号:
2308152 - 财政年份:2023
- 资助金额:
$ 11.09万 - 项目类别:
Standard Grant