Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
基本信息
- 批准号:0140604
- 负责人:
- 金额:$ 7.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Changfeng Gui, University of ConnecticutDMS-0140604Abstract:The PI will work on two projects on qualitative properties of partial differential equations. In the first project, he will study phase transitions modeled by the Allen-Cahnequation and its generalized vector equations, which are the gradient flows of the Allen-Cahn energy with either double-well potentials or multiple-well potentials of equal depths. The objectives are to determine the existence, uniqueness and stability of some special configurations, and then to further study the fine structure near the interfaces or nearthe triple junction and the dynamics of these sharp interfaces andtriple junctions. One of the immediate goals is to classify the optimalconfigurations of anti-phases. This is indeed to solve a conjecture ofDe Giorgi which concerns the one dimensional symmetry ofcertain entire solutions of the Euler-Lagrange equations of theAllen-Cahn energy. The De Giorgi conjecture is also related to the studyof minimal surfaces, and is still open in dimensions bigger than three.In the second project the PI will study the Gierier-Meinhardtsystems of equations arising in biological pattern formations and chemicalreactions. In particular, the proposor will try to show mathematicallythe existence of some special concentration patterns and to understandtheir stabilities.Diffusion is a very common phenomenon, and it generates verycomplex structures when several different substances are involved.Phase transitions, pattern formations are well observed in materialsciences, in biological and chemical reactions, and they are closelyrelated to diffusions. Special nonlinear partial differential equationsand systems are used to model these phenomena mathematically. Theproposor hope to develop analytic techniques to obtain goodqualitative properties for solutions of these equations, which will leadto better numerical methods for simulations. The study will help tounderstand the finer structures and long time behaviors of phasetransitions, pattern formations, and other similar phenomena.
主要研究者:Changfeng Gui,University of ConnecticutDMS-0140604摘要:PI将致力于两个关于偏微分方程定性性质的项目。 在第一个项目中,他将研究由艾伦-卡恩方程及其广义矢量方程建模的相变,这些方程是艾伦-卡恩能量的梯度流,具有相同深度的双阱势或多阱势。 其目的是确定某些特殊构型的存在性、唯一性和稳定性,进而进一步研究这些尖锐的界面或三重结附近的精细结构以及这些界面和三重结的动力学性质。 当前的目标之一是对反相的最佳构型进行分类。这实际上是为了解决De Giorgi关于Allen-Cahn能量的Euler-Lagrange方程某些整体解的一维对称性的猜想。 De Giorgi猜想也与极小曲面的研究有关,并且在大于3的维度上仍然是开放的。在第二个项目中,PI将研究生物图案形成和化学反应中产生的Gierier-Meinhardt方程组。特别是,建议者将试图说明一些特殊的浓度模式的存在,并了解他们的稳定性。扩散是一种非常普遍的现象,当涉及到几种不同的物质时,它会产生非常复杂的结构。相变,图案的形成在材料科学,生物和化学反应中很好地观察到,它们与扩散密切相关。 用特殊的非线性偏微分方程和系统对这些现象进行数学建模. 作者希望发展分析技术来获得这些方程的解的良好的定性性质,这将导致更好的数值模拟方法。 该研究将有助于理解相变、斑图形成和其他类似现象的精细结构和长时间行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changfeng Gui其他文献
Semi-waves with Lambda-shaped free boundary for nonlinear Stefan problems: Existence
非线性 Stefan 问题的具有 Lambda 形自由边界的半波:存在性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1
- 作者:
Yihong Du;Changfeng Gui;Wang Kelei;Maolin Zhou - 通讯作者:
Maolin Zhou
Layered solutions for a fractional inhomogeneous Allen–Cahn equation
分数次非齐次 Allen–Cahn 方程的分层解
- DOI:
10.1007/s00030-016-0384-z - 发表时间:
2016-04 - 期刊:
- 影响因子:0
- 作者:
Zhuoran Du;Changfeng Gui;Yannick Sire;Juncheng Wei - 通讯作者:
Juncheng Wei
Improved Beckner's inequality for axially symmetric functions on math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msupmrowmi mathvariant="double-struck"S/mi/mrowmrowmin/mi/mrow/msup/math
关于数学中轴对称函数的改进的贝克纳不等式,其中 xmlns:mml="http://www.w3.org/1998/Math/MathML" 且 altimg="si1.svg" 为类“math”,mrow 包含 mi(数学变体为“double-struck S”)以及 min 等。
- DOI:
10.1016/j.jfa.2021.109335 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:1.600
- 作者:
Changfeng Gui;Yeyao Hu;Weihong Xie - 通讯作者:
Weihong Xie
The Three-Dimensional Morphology of VY Canis Majoris. II. Polarimetry and the Line-of-Sight Distribution of the Ejecta
VY Canis Majoris 的三维形态。
- DOI:
10.1086/517610 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
T. Jones;R. Humphreys;L. Helton;Changfeng Gui;Changfeng Gui;Xiang Huang - 通讯作者:
Xiang Huang
Saddle solutions to Allen-Cahn equations in doubly periodic media
双周期介质中 Allen-Cahn 方程的鞍解
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:1.1
- 作者:
Francesca Alessio;Changfeng Gui;Piero Montecchiari - 通讯作者:
Piero Montecchiari
Changfeng Gui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changfeng Gui', 18)}}的其他基金
Studies of the Mean Field and Allen-Cahn Equations
平均场和 Allen-Cahn 方程的研究
- 批准号:
2155183 - 财政年份:2022
- 资助金额:
$ 7.1万 - 项目类别:
Standard Grant
Qualitative Study of the Mean Field Equation and Allen-Cahn Equation
平均场方程和Allen-Cahn方程的定性研究
- 批准号:
1901914 - 财政年份:2019
- 资助金额:
$ 7.1万 - 项目类别:
Standard Grant
Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
- 批准号:
1601885 - 财政年份:2016
- 资助金额:
$ 7.1万 - 项目类别:
Continuing Grant
Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
- 批准号:
0500871 - 财政年份:2005
- 资助金额:
$ 7.1万 - 项目类别:
Standard Grant
相似海外基金
Intentions, Effects, and Evaluation of Attracting Schools in Local Industries: Some Case Studies of Technical Colleges before World War II
地方产业吸纳学校的意图、效果与评价:二战前技术学院的一些案例研究
- 批准号:
19K01801 - 财政年份:2019
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
1. Experimental and numerical studies of 3-D transitions & 2. Characteristics of some highly curvilinear flows
1. 3-D 转变的实验和数值研究
- 批准号:
7608-2013 - 财政年份:2017
- 资助金额:
$ 7.1万 - 项目类别:
Discovery Grants Program - Individual
Some studies of Japanese letters from pre-modern to early times of modern
前现代至近代早期日本文字的一些研究
- 批准号:
17K18493 - 财政年份:2017
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Studies on some homogeneous submanifolds in symmetric spaces of noncompact type
非紧型对称空间中若干齐次子流形的研究
- 批准号:
16K17603 - 财政年份:2016
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
- 批准号:
1601885 - 财政年份:2016
- 资助金额:
$ 7.1万 - 项目类别:
Continuing Grant
Pilot Studies in order to Bring Out of Potentialities of Dando Bunko Collection - Particulary on the Dando - diary and some relevant materials
为发挥团道文库收藏的潜力而进行的试点研究 - 特别是团道 - 日记和一些相关材料
- 批准号:
16K03273 - 财政年份:2016
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comparative Linguistic Studies on the Acquisition of Referential Relations in Complement Clauses: with Some Emphases on Binding Relations in Japanese, Korean, and English
补语从句中指称关系习得的比较语言学研究——以日语、韩语、英语的约束关系为重点
- 批准号:
15K02771 - 财政年份:2015
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
1. Experimental and numerical studies of 3-D transitions & 2. Characteristics of some highly curvilinear flows
1. 3-D 转变的实验和数值研究
- 批准号:
7608-2013 - 财政年份:2015
- 资助金额:
$ 7.1万 - 项目类别:
Discovery Grants Program - Individual
1. Experimental and numerical studies of 3-D transitions & 2. Characteristics of some highly curvilinear flows
1. 3-D 转变的实验和数值研究
- 批准号:
7608-2013 - 财政年份:2014
- 资助金额:
$ 7.1万 - 项目类别:
Discovery Grants Program - Individual
1. Experimental and numerical studies of 3-D transitions & 2. Characteristics of some highly curvilinear flows
1. 3-D 转变的实验和数值研究
- 批准号:
7608-2013 - 财政年份:2013
- 资助金额:
$ 7.1万 - 项目类别:
Discovery Grants Program - Individual