Studies of the Mean Field and Allen-Cahn Equations

平均场和 Allen-Cahn 方程的研究

基本信息

  • 批准号:
    2155183
  • 负责人:
  • 金额:
    $ 38.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Partial differential equations (PDE) are fundamental tools in modeling many scientific and social phenomena. The mean field equation and the Allen-Cahn equation are two important types of nonlinear PDE that have arisen in the study of physical phenomena such as electroweak interaction and Chern-Simons-Higgs quantum field theories, statistical mechanics of two-dimensional turbulence, phase separation, and phase transitions. The mean field equation is also related to the study of general relativity as well as to cosmology. An important aspect of the Allen-Cahn equation is the formation of interfaces separating different physical regions of interest, which often have area minimizing properties, seen in minimal surfaces such as soap bubbles. This research project aims to advance understanding of these important equations through use of a mathematical tool recently developed by the investigator and collaborators. The project involves students at both undergraduate and graduate levels in interdisciplinary research. Postdoctoral fellows and junior researchers will also participate in and be trained as part of the project.The principal investigator plans to investigate the newly discovered sphere covering inequality (SCI) in high dimensions and various other generalizations. Applications to the mean field equation and its high-dimensional counterpart will be explored. The SCI connects geometry to analysis and has become a powerful tool in the study of two-dimensional nonlinear PDE. High-dimensional SCIs have potential for study of conformal geometry, such as improved Beckner's inequalities and uniqueness of solutions to higher order equations involving Paneitz operators. For the Allen-Cahn equation, the PI will focus on the level set structure of solutions of finite Morse index, such as, for example, the relation between the level sets of solutions and minimal surfaces. In particular, a classification of stable solutions in three dimensions will be pursued. The PI intends to use various identities and energy estimates as well as Morse index information to develop a new approach for these non-monotone, non-minimizing solutions. The final goal of the project is to understand completely entire solutions for both scalar and vector-valued Allen-Cahn equations and the stability and dynamics of triple or quadruple junctions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
偏微分方程(PDE)是模拟许多科学和社会现象的基本工具。平均场方程和Allen-Cahn方程是研究电弱相互作用和Chern-Simons-Higgs量子场论、二维湍流统计力学、相分离和相变等物理现象时产生的两类重要的非线性偏微分方程。平均场方程也与广义相对论和宇宙学的研究有关。艾伦-卡恩方程的一个重要方面是形成分隔不同感兴趣的物理区域的界面,这些界面通常具有面积最小化的属性,在极小表面(如肥皂泡)中可以看到。这项研究项目旨在通过使用研究人员和合作者最近开发的数学工具来促进对这些重要方程的理解。该项目让本科生和研究生参与跨学科研究。作为该项目的一部分,博士后研究员和初级研究人员也将参与并接受培训。主要研究人员计划研究新发现的高维和各种其他概括的覆盖不等的球体(SCI)。我们将探索平均场方程及其高维对应方程的应用。SCI将几何与分析联系起来,已成为研究二维非线性偏微分方程组的有力工具。高维SCI具有研究共形几何的潜力,例如改进的Beckner不等式和涉及Paneitz算子的高阶方程解的唯一性。对于Allen-Cahn方程,PI将关注有限Morse指数解的水平集结构,例如解的水平集与极小曲面之间的关系。特别是,将对三个维度的稳定解决方案进行分类。PI打算使用各种恒等式和能量估计以及Morse指数信息来开发用于这些非单调、非最小化解的新方法。该项目的最终目标是完全了解标量和矢量值Allen-Cahn方程的完整解,以及三重或四重连接的稳定性和动力学。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Changfeng Gui其他文献

Semi-waves with Lambda-shaped free boundary for nonlinear Stefan problems: Existence
非线性 Stefan 问题的具有 Lambda 形自由边界的半波:存在性
Layered solutions for a fractional inhomogeneous Allen–Cahn equation
分数次非齐次 Allen–Cahn 方程的分层解
Improved Beckner's inequality for axially symmetric functions on math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msupmrowmi mathvariant="double-struck"S/mi/mrowmrowmin/mi/mrow/msup/math
关于数学中轴对称函数的改进的贝克纳不等式,其中 xmlns:mml="http://www.w3.org/1998/Math/MathML" 且 altimg="si1.svg" 为类“math”,mrow 包含 mi(数学变体为“double-struck S”)以及 min 等。
  • DOI:
    10.1016/j.jfa.2021.109335
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Changfeng Gui;Yeyao Hu;Weihong Xie
  • 通讯作者:
    Weihong Xie
The Three-Dimensional Morphology of VY Canis Majoris. II. Polarimetry and the Line-of-Sight Distribution of the Ejecta
VY Canis Majoris 的三维形态。
  • DOI:
    10.1086/517610
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Jones;R. Humphreys;L. Helton;Changfeng Gui;Changfeng Gui;Xiang Huang
  • 通讯作者:
    Xiang Huang
Saddle solutions to Allen-Cahn equations in doubly periodic media
双周期介质中 Allen-Cahn 方程的鞍解

Changfeng Gui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Changfeng Gui', 18)}}的其他基金

Qualitative Study of the Mean Field Equation and Allen-Cahn Equation
平均场方程和Allen-Cahn方程的定性研究
  • 批准号:
    1901914
  • 财政年份:
    2019
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Standard Grant
Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
  • 批准号:
    1601885
  • 财政年份:
    2016
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Continuing Grant
Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
  • 批准号:
    0500871
  • 财政年份:
    2005
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Standard Grant
Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
  • 批准号:
    0140604
  • 财政年份:
    2002
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Continuing Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2345533
  • 财政年份:
    2023
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Standard Grant
Mean Field Game Theory and Its Application to Mathematical Finance
平均场博弈论及其在数学金融中的应用
  • 批准号:
    23KJ0648
  • 财政年份:
    2023
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Representation Learning via Variational Mean Field Theory
通过变分平均场理论进行表示学习
  • 批准号:
    2401297
  • 财政年份:
    2023
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Standard Grant
Mean Field Games and Master equations
平均场游戏和主方程
  • 批准号:
    EP/X020320/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Research Grant
Cut-off phenomenon, ergodicity and other properties for stochastic differential equations of partial, rough and mean-field type.
偏、粗糙和平均场型随机微分方程的截止现象、遍历性和其他性质。
  • 批准号:
    2884422
  • 财政年份:
    2023
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Studentship
Mean-Field Spin Glasses and Related Topics
平均场自旋玻璃及相关主题
  • 批准号:
    2246715
  • 财政年份:
    2023
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Continuing Grant
Dynamics of Lattice and Mean-Field Spin Systems
晶格和平均场自旋系统的动力学
  • 批准号:
    2246780
  • 财政年份:
    2023
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Standard Grant
CAREER: Photochemistry with Resonating Mean-Field
职业:光化学与共振平均场
  • 批准号:
    2236959
  • 财政年份:
    2023
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了