Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
基本信息
- 批准号:0500871
- 负责人:
- 金额:$ 11.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Qualitative Studies of some Partial Differential Equations and Systems.Changfeng GuiUniversity of Connecticut, StorrsAbstractIn this project the Principal Investigator (PI) will study some partial differential equations arising in material sciences, phase transition and other applied sciences. In particular, the PI plans to investigate the global (in space) properties of stationary Allen-Cahn equation and related equations. The goal is to completely classify all entire solutions for two dimensional spaces, and classify certain entire solutions in higher dimensions. The PI will also study the singular sets of minimizers of a vector valued Allen-Cahn equation which appears in the analysis of multiple phase segregation. The goal is to rigorously prove the formation of triple junction for general convex domains and to obtain the dynamics of the triple junctions. The PI will also investigate theoretically a new level set method for image segmentation which gets rid of re-initialization in numerical computations.The research will shed a light on the finer structure near interfaces between different materials and phases,and help to develop more efficient techniques for image segmentations and registrations, which are very important for medical science and other areas.
在本项目中,主要研究者(PI)将研究在材料科学、相变和其他应用科学中出现的一些偏微分方程。 特别是, PI计划研究定常Allen-Cahn方程及其相关方程的全局(空间)性质。我们的目标是对二维空间的所有整体解进行完全分类,并对高维空间的某些整体解进行分类。 PI还将研究在多相分离分析中出现的向量值Allen-Cahn方程的极小值的奇异集。 我们的目标是严格证明一般凸域的三结点的形成,并获得三结点的动力学。 本项目还将从理论上研究一种新的水平集图像分割方法,该方法避免了数值计算中的重新初始化,有助于揭示不同材料和相界面附近的精细结构,并有助于开发更有效的图像分割和配准技术,这在医学等领域具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changfeng Gui其他文献
Semi-waves with Lambda-shaped free boundary for nonlinear Stefan problems: Existence
非线性 Stefan 问题的具有 Lambda 形自由边界的半波:存在性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1
- 作者:
Yihong Du;Changfeng Gui;Wang Kelei;Maolin Zhou - 通讯作者:
Maolin Zhou
Layered solutions for a fractional inhomogeneous Allen–Cahn equation
分数次非齐次 Allen–Cahn 方程的分层解
- DOI:
10.1007/s00030-016-0384-z - 发表时间:
2016-04 - 期刊:
- 影响因子:0
- 作者:
Zhuoran Du;Changfeng Gui;Yannick Sire;Juncheng Wei - 通讯作者:
Juncheng Wei
Improved Beckner's inequality for axially symmetric functions on math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msupmrowmi mathvariant="double-struck"S/mi/mrowmrowmin/mi/mrow/msup/math
关于数学中轴对称函数的改进的贝克纳不等式,其中 xmlns:mml="http://www.w3.org/1998/Math/MathML" 且 altimg="si1.svg" 为类“math”,mrow 包含 mi(数学变体为“double-struck S”)以及 min 等。
- DOI:
10.1016/j.jfa.2021.109335 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:1.600
- 作者:
Changfeng Gui;Yeyao Hu;Weihong Xie - 通讯作者:
Weihong Xie
The Three-Dimensional Morphology of VY Canis Majoris. II. Polarimetry and the Line-of-Sight Distribution of the Ejecta
VY Canis Majoris 的三维形态。
- DOI:
10.1086/517610 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
T. Jones;R. Humphreys;L. Helton;Changfeng Gui;Changfeng Gui;Xiang Huang - 通讯作者:
Xiang Huang
Saddle solutions to Allen-Cahn equations in doubly periodic media
双周期介质中 Allen-Cahn 方程的鞍解
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:1.1
- 作者:
Francesca Alessio;Changfeng Gui;Piero Montecchiari - 通讯作者:
Piero Montecchiari
Changfeng Gui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changfeng Gui', 18)}}的其他基金
Studies of the Mean Field and Allen-Cahn Equations
平均场和 Allen-Cahn 方程的研究
- 批准号:
2155183 - 财政年份:2022
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Qualitative Study of the Mean Field Equation and Allen-Cahn Equation
平均场方程和Allen-Cahn方程的定性研究
- 批准号:
1901914 - 财政年份:2019
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
- 批准号:
1601885 - 财政年份:2016
- 资助金额:
$ 11.1万 - 项目类别:
Continuing Grant
Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
- 批准号:
0140604 - 财政年份:2002
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
相似海外基金
Intentions, Effects, and Evaluation of Attracting Schools in Local Industries: Some Case Studies of Technical Colleges before World War II
地方产业吸纳学校的意图、效果与评价:二战前技术学院的一些案例研究
- 批准号:
19K01801 - 财政年份:2019
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
1. Experimental and numerical studies of 3-D transitions & 2. Characteristics of some highly curvilinear flows
1. 3-D 转变的实验和数值研究
- 批准号:
7608-2013 - 财政年份:2017
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual
Some studies of Japanese letters from pre-modern to early times of modern
前现代至近代早期日本文字的一些研究
- 批准号:
17K18493 - 财政年份:2017
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Studies on some homogeneous submanifolds in symmetric spaces of noncompact type
非紧型对称空间中若干齐次子流形的研究
- 批准号:
16K17603 - 财政年份:2016
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
- 批准号:
1601885 - 财政年份:2016
- 资助金额:
$ 11.1万 - 项目类别:
Continuing Grant
Pilot Studies in order to Bring Out of Potentialities of Dando Bunko Collection - Particulary on the Dando - diary and some relevant materials
为发挥团道文库收藏的潜力而进行的试点研究 - 特别是团道 - 日记和一些相关材料
- 批准号:
16K03273 - 财政年份:2016
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comparative Linguistic Studies on the Acquisition of Referential Relations in Complement Clauses: with Some Emphases on Binding Relations in Japanese, Korean, and English
补语从句中指称关系习得的比较语言学研究——以日语、韩语、英语的约束关系为重点
- 批准号:
15K02771 - 财政年份:2015
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
1. Experimental and numerical studies of 3-D transitions & 2. Characteristics of some highly curvilinear flows
1. 3-D 转变的实验和数值研究
- 批准号:
7608-2013 - 财政年份:2015
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual
1. Experimental and numerical studies of 3-D transitions & 2. Characteristics of some highly curvilinear flows
1. 3-D 转变的实验和数值研究
- 批准号:
7608-2013 - 财政年份:2014
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual
1. Experimental and numerical studies of 3-D transitions & 2. Characteristics of some highly curvilinear flows
1. 3-D 转变的实验和数值研究
- 批准号:
7608-2013 - 财政年份:2013
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual