Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
基本信息
- 批准号:1601885
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Allen-Cahn equation was first proposed by materials scientists as a model for studying phase separation between different materials as well as phase transitions between different phases of the same materials. An important aspect of the equation is that it enables the display of interfaces separating different physical regions of interest. Such interfaces often share significant features with soap bubbles or, in more precise mathematical terminology, with minimal surfaces. The equation has also found applications in many other area of science and engineering such as astrophysics and image processing. In addition to its significance in advancing knowledge in mathematics and other sciences, the Allen-Cahn equation provides an excellent tool for training students and junior researchers in interdisciplinary research. The principal investigator will engage in both the research and the training activities related to the equation and will involve students at both the undergraduate and the graduate levels, using the theoretical study of the equation to develop better algorithms for medical image analysis. Postdoctoral fellows and junior researchers will also participate and be trained in the project. The principal investigator plans to study saddle solutions and traveling wave solutions of Allen-Cahn-type equations, including the classic scalar equations with double well potentials and vector-valued equations with multiple well potentials. He will focus on the existence of special saddle solutions with prescribed level sets as well as on the level set structure of solutions of finite Morse index, in particular, on the relation between the level sets of solutions and minimal surfaces. He intends to use various identities, as well as Morse index information, to develop new approach for these nonmonotone, nonminimizing solutions. The long-term goal of the project is to understand general entire solutions to both scalar and vector-valued Allen-Cahn equations and to gain insight into the stability and dynamics of triple junctions or quadruple junctions. The nodal sets or singularities of the solutions will receive special attention in the study, for not only do they play an important role in the theoretical analysis of the equation, but they also represent in applications the interfaces or junctions of interfaces of different phases or grain boundaries in materials such as crystalline alloys. The project will broaden the participation of underrepresented minorities, including Hispanic students, in mathematical and interdisciplinary research.
Allen-Cahn方程最早由材料科学家提出,作为研究不同材料之间相分离以及相同材料不同相之间相变的模型。 该方程的一个重要方面是,它能够显示分离不同物理感兴趣区域的界面。 这种界面通常与肥皂泡或更精确的数学术语中的最小表面共享重要特征。该方程还在许多其他科学和工程领域,如天体物理学和图像处理中得到应用。 除了在数学和其他科学知识的进步意义,艾伦-卡恩方程提供了一个很好的工具,培养跨学科研究的学生和初级研究人员。主要研究者将参与与方程相关的研究和培训活动,并将涉及本科生和研究生水平的学生,利用方程的理论研究来开发更好的医学图像分析算法。博士后研究员和初级研究人员也将参与该项目并接受培训。 主要研究者计划研究Allen-Cahn型方程的鞍解和行波解,包括经典的双阱势标量方程和多阱势向量值方程。他将专注于存在的特殊鞍解决方案与规定的水平集以及水平集结构的解决方案的有限莫尔斯指数,特别是,对之间的关系水平集的解决方案和最小的表面。 他打算使用各种身份,以及莫尔斯指数信息,开发新的方法,这些非单调,非最小化的解决方案。 该项目的长期目标是了解标量和矢量值Allen-Cahn方程的一般整体解,并深入了解三重结或四重结的稳定性和动力学。 解的节点集或奇点将在研究中受到特别关注,因为它们不仅在方程的理论分析中起着重要作用,而且在应用中还代表了不同相或晶界的界面或界面的接合点,如晶体合金。该项目将扩大包括西班牙裔学生在内的代表性不足的少数民族在数学和跨学科研究中的参与。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symmetry and uniqueness of solutions to some Liouville-type equations and systems
- DOI:10.1080/03605302.2018.1446164
- 发表时间:2017-03
- 期刊:
- 影响因子:1.9
- 作者:C. Gui;Aleks Jevnikar;Amir Moradifam
- 通讯作者:C. Gui;Aleks Jevnikar;Amir Moradifam
Blow-up solutions for a mean field equation on a flat torus
- DOI:10.1512/iumj.2020.69.7853
- 发表时间:2020
- 期刊:
- 影响因子:1.1
- 作者:Ze Cheng;C. Gui;Yeyao Hu
- 通讯作者:Ze Cheng;C. Gui;Yeyao Hu
The sphere covering inequality and its applications
- DOI:10.1007/s00222-018-0820-2
- 发表时间:2016-05
- 期刊:
- 影响因子:3.1
- 作者:C. Gui;Amir Moradifam
- 通讯作者:C. Gui;Amir Moradifam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changfeng Gui其他文献
Semi-waves with Lambda-shaped free boundary for nonlinear Stefan problems: Existence
非线性 Stefan 问题的具有 Lambda 形自由边界的半波:存在性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1
- 作者:
Yihong Du;Changfeng Gui;Wang Kelei;Maolin Zhou - 通讯作者:
Maolin Zhou
Layered solutions for a fractional inhomogeneous Allen–Cahn equation
分数次非齐次 Allen–Cahn 方程的分层解
- DOI:
10.1007/s00030-016-0384-z - 发表时间:
2016-04 - 期刊:
- 影响因子:0
- 作者:
Zhuoran Du;Changfeng Gui;Yannick Sire;Juncheng Wei - 通讯作者:
Juncheng Wei
Improved Beckner's inequality for axially symmetric functions on math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msupmrowmi mathvariant="double-struck"S/mi/mrowmrowmin/mi/mrow/msup/math
关于数学中轴对称函数的改进的贝克纳不等式,其中 xmlns:mml="http://www.w3.org/1998/Math/MathML" 且 altimg="si1.svg" 为类“math”,mrow 包含 mi(数学变体为“double-struck S”)以及 min 等。
- DOI:
10.1016/j.jfa.2021.109335 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:1.600
- 作者:
Changfeng Gui;Yeyao Hu;Weihong Xie - 通讯作者:
Weihong Xie
The Three-Dimensional Morphology of VY Canis Majoris. II. Polarimetry and the Line-of-Sight Distribution of the Ejecta
VY Canis Majoris 的三维形态。
- DOI:
10.1086/517610 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
T. Jones;R. Humphreys;L. Helton;Changfeng Gui;Changfeng Gui;Xiang Huang - 通讯作者:
Xiang Huang
Saddle solutions to Allen-Cahn equations in doubly periodic media
双周期介质中 Allen-Cahn 方程的鞍解
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:1.1
- 作者:
Francesca Alessio;Changfeng Gui;Piero Montecchiari - 通讯作者:
Piero Montecchiari
Changfeng Gui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changfeng Gui', 18)}}的其他基金
Studies of the Mean Field and Allen-Cahn Equations
平均场和 Allen-Cahn 方程的研究
- 批准号:
2155183 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Qualitative Study of the Mean Field Equation and Allen-Cahn Equation
平均场方程和Allen-Cahn方程的定性研究
- 批准号:
1901914 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
- 批准号:
0500871 - 财政年份:2005
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Qualitative Studies of Some Partial Differential Equations and Systems
一些偏微分方程和系统的定性研究
- 批准号:
0140604 - 财政年份:2002
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似海外基金
Intentions, Effects, and Evaluation of Attracting Schools in Local Industries: Some Case Studies of Technical Colleges before World War II
地方产业吸纳学校的意图、效果与评价:二战前技术学院的一些案例研究
- 批准号:
19K01801 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
1. Experimental and numerical studies of 3-D transitions & 2. Characteristics of some highly curvilinear flows
1. 3-D 转变的实验和数值研究
- 批准号:
7608-2013 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Some studies of Japanese letters from pre-modern to early times of modern
前现代至近代早期日本文字的一些研究
- 批准号:
17K18493 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Studies on some homogeneous submanifolds in symmetric spaces of noncompact type
非紧型对称空间中若干齐次子流形的研究
- 批准号:
16K17603 - 财政年份:2016
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Pilot Studies in order to Bring Out of Potentialities of Dando Bunko Collection - Particulary on the Dando - diary and some relevant materials
为发挥团道文库收藏的潜力而进行的试点研究 - 特别是团道 - 日记和一些相关材料
- 批准号:
16K03273 - 财政年份:2016
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comparative Linguistic Studies on the Acquisition of Referential Relations in Complement Clauses: with Some Emphases on Binding Relations in Japanese, Korean, and English
补语从句中指称关系习得的比较语言学研究——以日语、韩语、英语的约束关系为重点
- 批准号:
15K02771 - 财政年份:2015
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
1. Experimental and numerical studies of 3-D transitions & 2. Characteristics of some highly curvilinear flows
1. 3-D 转变的实验和数值研究
- 批准号:
7608-2013 - 财政年份:2015
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
1. Experimental and numerical studies of 3-D transitions & 2. Characteristics of some highly curvilinear flows
1. 3-D 转变的实验和数值研究
- 批准号:
7608-2013 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
1. Experimental and numerical studies of 3-D transitions & 2. Characteristics of some highly curvilinear flows
1. 3-D 转变的实验和数值研究
- 批准号:
7608-2013 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Some Contacts and Frictions of Language and Culture between Japan and Thailand: Studies of Japanese Educational History in Thailand Since During War-time until Present-age
日泰语言文化的一些接触与摩擦——战时至今泰国日本教育史研究
- 批准号:
25370600 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)