Inequalities for Polytopes and Permutations, and Homology for Newtonian Coalgebras
多面体和排列的不等式以及牛顿代数的同调
基本信息
- 批准号:0200624
- 负责人:
- 金额:$ 10.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Principle Investigator studies a new class of inequalities on the flag f-vector of convex polytopes. The flag f-vector contains all the enumerative incidence information between the faces of a polytope. Thus to classify the set of all possible flag f-vectors is one of the great open problems in discrete geometry. To date only partial results to this problem have been obtained. In a related problem, the Principle Investigator and his Research Assistant will study the homology groups of Newtonian coalgebras that arise in polytopal theory. These homology groups were recently used to give an algebraic proof of the existence of the cd-index, an important invariant inposet theory. Understanding the homology of these chain complexes will give insight into new applications of Newtonian coalgebras.Polytopes are basic mathematical objects that appear in discrete geometry. The methods to attack these problems are unusually interdisciplinary as they involve insights from both geometry and algebra. The results of this investigation are important as they relate both to the pure branches of mathematics, such as commutative algebra, algebraic geometry and Hopf algebras, and to the applied sciences, including optimization and computer science. Understanding the enumerative information of polytopes will give a theoretical basis for stress and rigidity problems in mechanical engineering, for the reconstruction using sampling problem in computer vision, and fordetermining the complexity of geometrically-based problems inoptimization.
主要研究了凸多面体的旗f-向量的一类新的不等式。标志f向量包含多面体的面之间的所有枚举关联信息。因此,对所有可能的标志f-向量的集合进行分类是离散几何中的一个重大开放问题。 到目前为止,这个问题只得到了部分结果。 在一个相关的问题中,主要研究者和他的研究助理将研究多面体理论中出现的牛顿余代数的同调群。 这些同调群最近被用来给出cd指标存在性的代数证明,cd指标是一个重要的不变偏序集理论。 了解这些链复形的同调将有助于深入了解牛顿余代数的新应用。多面体是离散几何中出现的基本数学对象。 攻击这些问题的方法是不寻常的跨学科,因为它们涉及几何和代数的见解。 这项调查的结果是重要的,因为它们涉及到纯数学分支,如交换代数,代数几何和霍普夫代数,并应用科学,包括优化和计算机科学。 了解多面体的枚举信息将为机械工程中的应力和刚度问题、计算机视觉中的抽样重构问题以及优化中的几何问题的复杂性判定提供理论基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Ehrenborg其他文献
Prisms and Pyramids of Shelling Components
- DOI:
10.1007/s00026-018-0412-2 - 发表时间:
2018-10-11 - 期刊:
- 影响因子:0.700
- 作者:
Richard Ehrenborg - 通讯作者:
Richard Ehrenborg
k-Eulerian Posets
- DOI:
10.1023/a:1012296719116 - 发表时间:
2001-09-01 - 期刊:
- 影响因子:0.300
- 作者:
Richard Ehrenborg - 通讯作者:
Richard Ehrenborg
Generating functions for the cd-indices of simplices and cubes
- DOI:
10.54550/eca2024v4s3r18 - 发表时间:
2023-10 - 期刊:
- 影响因子:0
- 作者:
Richard Ehrenborg - 通讯作者:
Richard Ehrenborg
A Geometric Approach to Acyclic Orientations
- DOI:
10.1007/s11083-009-9122-z - 发表时间:
2009-08-20 - 期刊:
- 影响因子:0.300
- 作者:
Richard Ehrenborg;MLE Slone - 通讯作者:
MLE Slone
The Tchebyshev Transforms of the First and Second Kind
- DOI:
10.1007/s00026-010-0057-2 - 发表时间:
2010-05-09 - 期刊:
- 影响因子:0.700
- 作者:
Richard Ehrenborg;Margaret Readdy - 通讯作者:
Margaret Readdy
Richard Ehrenborg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Ehrenborg', 18)}}的其他基金
Bruhat and balanced graphs, manifolds, partitions and affine permutations
Bruhat 和平衡图、流形、分区和仿射排列
- 批准号:
0902063 - 财政年份:2009
- 资助金额:
$ 10.21万 - 项目类别:
Standard Grant
相似海外基金
Geometric Combinatorics in Polytopes and Spheres
多面体和球体中的几何组合
- 批准号:
2246739 - 财政年份:2023
- 资助金额:
$ 10.21万 - 项目类别:
Standard Grant
The relationship between the polarized structure of toric varieties and convex polytopes
复曲面品种的偏振结构与凸多胞体之间的关系
- 批准号:
23K03075 - 财政年份:2023
- 资助金额:
$ 10.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Workshop on Symmetries in Graphs, Maps, and Polytopes 2022
图表、地图和多面体对称性研讨会 2022
- 批准号:
2203776 - 财政年份:2022
- 资助金额:
$ 10.21万 - 项目类别:
Standard Grant
RUI: Algebra and Geometry of Matroids and Polytopes
RUI:拟阵和多面体的代数和几何
- 批准号:
2154279 - 财政年份:2022
- 资助金额:
$ 10.21万 - 项目类别:
Continuing Grant
Classical simulation of quantum computation via quasiprobability representations, Lambda polytopes, and mapping to fermions
通过准概率表示、Lambda 多面体和映射到费米子进行量子计算的经典模拟
- 批准号:
577736-2022 - 财政年份:2022
- 资助金额:
$ 10.21万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Challenge towards the open problems in the theory of lattice polytopes by algebraic and combinatorial methods
用代数和组合方法挑战晶格多胞体理论中的开放问题
- 批准号:
21KK0043 - 财政年份:2021
- 资助金额:
$ 10.21万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Classification of Uniform Polytopes
均匀多面体的分类
- 批准号:
562637-2021 - 财政年份:2021
- 资助金额:
$ 10.21万 - 项目类别:
University Undergraduate Student Research Awards
Geometric and Algebraic Approach to Polytopes
多面体的几何和代数方法
- 批准号:
RGPIN-2016-05354 - 财政年份:2021
- 资助金额:
$ 10.21万 - 项目类别:
Discovery Grants Program - Individual
Interactions between toric varieties and convex polytopes
复曲面变体与凸多面体之间的相互作用
- 批准号:
20K03562 - 财政年份:2020
- 资助金额:
$ 10.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric and Algebraic Approach to Polytopes
多面体的几何和代数方法
- 批准号:
RGPIN-2016-05354 - 财政年份:2020
- 资助金额:
$ 10.21万 - 项目类别:
Discovery Grants Program - Individual