RUI: Algebra and Geometry of Matroids and Polytopes
RUI:拟阵和多面体的代数和几何
基本信息
- 批准号:2154279
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The field of combinatorics has grown and deepened enormously in the last 50 years, in response to the mathematical needs of modern computing, physics, and biology, and the computational needs of all areas of mathematics. This research project in combinatorics is driven by two related philosophies: many mathematical objects are best understood by studying the rich discrete structures underlying them, and many of those discrete structures are best understood by building geometric models for them. This grant constitutes the academic backbone of the San Francisco State University-Colombia Combinatorics Initiative, a vibrant research and training collaboration featuring research-based courses, research projects, and summer schools. Since 2007 the initiative has trained more than 250 pre-Ph.D. students; more than half of the US participants are members of underrepresented groups in mathematics, and more than 80 have gone on to Ph.D. programs. The initiative’s practices of excellence and inclusion are shared broadly by the PI and many others, and they serve as a model for other math and science programs nationwide and beyond.This project studies two research directions at the intersection of combinatorics and geometry: 1. We construct and study several geometric models of a matroid. Using tools from tropical geometry, Hodge theory, and intersection theory, we derive novel combinatorial properties of matroids that do not seem accessible purely combinatorially. 2. Measuring polytopes is very difficult in general, but it can be done when the polytopes have sufficient combinatorial or algebraic structure. We construct and measure families of polytopes arising in various mathematical settings, and use those measurements to compute algebraic and geometric quantities of interest. In both of these research directions, relevant objects are often built from a configuration of vectors – usually a root system. Polytopes and matroids offer a powerful toolkit to study such configurations. The proposed projects will further our understanding of fundamental questions in combinatorics, discrete geometry, representation theory, and algebraic geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的50年里,组合数学领域得到了极大的发展和深化,以满足现代计算,物理学和生物学的数学需求,以及所有数学领域的计算需求。这个组合学的研究项目是由两个相关的哲学驱动的:许多数学对象通过研究它们背后丰富的离散结构来最好地理解,而许多离散结构通过为它们建立几何模型来最好地理解。这笔赠款构成了旧金山弗朗西斯科州立大学-哥伦比亚组合动力学计划的学术骨干,该计划是一项充满活力的研究和培训合作,以研究为基础的课程,研究项目和暑期学校为特色。自2007年以来,该计划已培养了250多名博士预科生。超过一半的美国参与者是数学代表性不足的群体的成员,超过80人获得了博士学位。程序.该项目的卓越和包容性的实践被PI和许多其他人广泛分享,他们作为全国范围内和其他地区的其他数学和科学项目的典范。该项目研究组合数学和几何交叉的两个研究方向:1.我们构造并研究了拟阵的几种几何模型。使用工具,从热带几何,霍奇理论和交叉理论,我们得到新的组合性质拟阵,似乎不访问纯粹的组合。2.测量多面体通常是非常困难的,但当多面体具有足够的组合或代数结构时,它可以做到。我们构造和测量在各种数学环境中产生的多面体族,并使用这些测量来计算感兴趣的代数和几何量。在这两个研究方向中,相关的对象通常是从向量的配置中构建的-通常是根系。多面体和拟阵提供了一个强大的工具包来研究这样的配置。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hopf Monoids and Generalized Permutahedra
- DOI:10.1090/memo/1437
- 发表时间:2017-09
- 期刊:
- 影响因子:1.9
- 作者:M. Aguiar;Federico Ardila
- 通讯作者:M. Aguiar;Federico Ardila
Lagrangian geometry of matroids
拟阵的拉格朗日几何
- DOI:10.1090/jams/1009
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Ardila, Federico;Denham, Graham;Huh, June
- 通讯作者:Huh, June
The tropical critical points of an affine matroid
仿射拟阵的热带临界点
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ardila-Mantilla, Federico;Eur, Christopher;Penaguiao, Raul
- 通讯作者:Penaguiao, Raul
Lagrangian combinatorics of matroids
拟阵的拉格朗日组合
- DOI:10.5802/alco.263
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ardila, Federico;Denham, Graham;Huh, June
- 通讯作者:Huh, June
Todxs Cuentan en ECCO: Building a Mathematical Community
Todxs Cuentan en ECCO:建立数学社区
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ardila-Mantilla, Federico;Benedetti-Velásquez Carolina
- 通讯作者:Benedetti-Velásquez Carolina
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Federico Ardila其他文献
Tres lecciones en combinatoria algebraica. III. Arreglos de hiperplanos
代数组合的三门学习。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Federico Ardila;Emerson Le'on;M. Rosas;Mark Skandera - 通讯作者:
Mark Skandera
The double Gromov-Witten invariants of Hirzebruch surfaces are piecewise polynomial
Hirzebruch 曲面的双 Gromov-Witten 不变量是分段多项式
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Federico Ardila;E. Brugallé - 通讯作者:
E. Brugallé
Geodesics in CAT(0) Cubical Complexes
CAT(0) 立方复形中的测地线
- DOI:
10.1016/j.aam.2011.06.004 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Federico Ardila;Megan Owen;S. Sullivant - 通讯作者:
S. Sullivant
The Equivariant Volumes of the Permutahedron
置换面体的等变体积
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0.8
- 作者:
Federico Ardila;A. Schindler;Andrés R. Vindas - 通讯作者:
Andrés R. Vindas
Subdominant Matroid Ultrametrics
次主拟阵 Ultrametrics
- DOI:
10.1007/s00026-004-0227-1 - 发表时间:
2004 - 期刊:
- 影响因子:0.5
- 作者:
Federico Ardila - 通讯作者:
Federico Ardila
Federico Ardila的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Federico Ardila', 18)}}的其他基金
Polytopes and Matroids in Algebra and Geometry
代数和几何中的多面体和拟阵
- 批准号:
1855610 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
RUI: Algebraic and Geometric Aspects of Matroids, Polytopes, and Arrangements
RUI:拟阵、多面体和排列的代数和几何方面
- 批准号:
1600609 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Matroids, polytopes, and their valuations in algebra and geometry
职业:拟阵、多面体及其在代数和几何中的估值
- 批准号:
0956178 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Formal Power Series and Algebraic Combinatorics: An International Combinatorics Conference
形式幂级数和代数组合学:国际组合学会议
- 批准号:
0963923 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
- 批准号:
2412921 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302262 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Combinatorics, Algebra, and Geometry of Simplicial Complexes
单纯复形的组合学、代数和几何
- 批准号:
2246399 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2314082 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
- 批准号:
2246962 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302263 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Multigraded commutative algebra and the geometry of syzygies
多级交换代数和 syzygies 几何
- 批准号:
2302373 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant