Higher Dimensional Algebraic Varieties
高维代数簇
基本信息
- 批准号:0200883
- 负责人:
- 金额:$ 14.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator plans to work on three problems. The first is to find relationshipsbetween the topology of a real algebraic variety andits complex geometry, more precisely its Kodaira dimension.The ultimate is to prove that a topologicaly complicated(for intance hyperbolic) threefold can be representedonly by a variety of maximal Kodaira dimension.The second project is to do a systematic investigationof the connections between hyperbolic differential equationsand real algebraic geometry. Many instances of this have beennoted in the past, but no systematic theory was ever developed.The third project is the study of arithmetic properties ofrationally connected varieties, especially the existence ofrational points and curves over fields which are not algebraicallyclosed. It is quite likely that geometry governs these questionsover local fields, while the problems over global fields are morearithmetic in nature.Hyperbolic differential equations describe processes thatchange with time. For instance the heating up of a furnace,the flow of water through a turbine and the spreading of bacteriain a medium can all be described, more or less accurately, byhyperbolic differential equations. These differential equationsand their solutions are rather complicated, both theoreticallyand computationally. It has been noticed that many questions about these differential equations can be approached through simple algebraic manipulations. It is the principal investigator's plan to put these diverse observations into a general conceptual framework. The principal investigator expects that this will lead to several new applications in the theory of hyperbolic differential equations. Conversely, relating the abstract algebraic machinery to physical phenomena in a new way should also provide insights to the behaviour of algebraic systems.
首席研究员计划研究三个问题。第一个项目是寻找真实的代数簇的拓扑与其复几何,更确切地说是它的Kodaira维数之间的关系,最终证明了拓扑复杂的(对于intance双曲)三重可以仅由各种极大Kodaira维数表示.第二个项目是系统地研究双曲微分方程与真实的代数几何之间的联系.第三个项目是研究分数连通簇的算术性质,特别是非代数闭域上分数点和分数曲线的存在性。这些问题很可能是由几何学决定的,而全局域上的问题本质上更多的是算术问题。双曲微分方程描述了随时间变化的过程。例如,炉子的加热,水通过涡轮机的流动,细菌在介质中的传播,都可以用双曲型微分方程或多或少地精确描述。这些微分方程及其解无论在理论上还是计算上都相当复杂。人们已经注意到,这些微分方程的许多问题可以通过简单的代数运算来处理。主要研究者的计划是将这些不同的观察结果纳入一个总体概念框架。首席研究员预计,这将导致在双曲型微分方程理论的几个新的应用。相反,以一种新的方式将抽象的代数机器与物理现象联系起来,也应该为代数系统的行为提供见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janos Kollar其他文献
Subadditivity of Kodaira dimension does not hold in positive characteristic
小平维度的次可加性在正特征中不成立
- DOI:
10.4171/cmh/517 - 发表时间:
2020-03 - 期刊:
- 影响因子:0
- 作者:
Paolo Cascini;Sho Ejiri;Janos Kollar;Lei Zhang - 通讯作者:
Lei Zhang
The Noether inequality for algebraic threefolds
代数三重的诺特不等式
- DOI:
- 发表时间:
2018-03 - 期刊:
- 影响因子:0
- 作者:
Jungkai A. Chen;Meng Chen;Chen Jiang;Janos Kollar - 通讯作者:
Janos Kollar
Janos Kollar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janos Kollar', 18)}}的其他基金
Problems in Higher Dimensional Algebraic Geometry
高维代数几何问题
- 批准号:
1502236 - 财政年份:2015
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Arithmetic and geometry of rational curves on K3 surfaces
FRG:协作研究:K3 曲面上有理曲线的算术和几何
- 批准号:
0968337 - 财政年份:2010
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Higher dimensional varieties and their applications
高维簇及其应用
- 批准号:
0758275 - 财政年份:2008
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Structure of Algebraic Varieties
数学科学:代数簇的结构
- 批准号:
9622394 - 财政年份:1996
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Conference: Higher dimensional algebraic geometry
会议:高维代数几何
- 批准号:
2327037 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Higher Dimensional Algebraic Varieties: Geometry and Arithmetic
高维代数簇:几何和算术
- 批准号:
2140781 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Higher Dimensional Algebraic Varieties: Geometry and Arithmetic
高维代数簇:几何和算术
- 批准号:
2001408 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
JAMI Conference on Higher Dimensional Algebraic Geometry
JAMI 高维代数几何会议
- 批准号:
1933539 - 财政年份:2019
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Arithmetic Geometry via Higher Dimensional Algebraic Geometry
通过高维代数几何的算术几何
- 批准号:
19K14512 - 财政年份:2019
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The minimal model theory for higher-dimensional algebraic varieties and singularity theory
高维代数簇的极小模型理论和奇点理论
- 批准号:
19J00046 - 财政年份:2019
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Algebraic topology, higher-dimensional algebras and rewriting
代数拓扑、高维代数和重写
- 批准号:
17F17810 - 财政年份:2017
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Unipotent structure of higher dimensional algebraic varieties and automorphism groups
高维代数簇和自同构群的单能结构
- 批准号:
16K05115 - 财政年份:2016
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Birational geometry for higher-dimensional algebraic varieties
高维代数簇的双有理几何
- 批准号:
16H03925 - 财政年份:2016
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Birational geometry of higher dimensional algebraic varieties
高维代数簇的双有理几何
- 批准号:
16H02141 - 财政年份:2016
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (A)