Families of varieties of general type

一般型品种科

基本信息

  • 批准号:
    1362960
  • 负责人:
  • 金额:
    $ 67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

The PI will study surfaces and their variations. From the computational point of view, the best surfaces are those that can be described by a polynomial equation. Not every surface is such but Nash proved that every surface can be approximated by such polynomially defined surfaces. The main aim of the proposal is to understand how surfaces vary if we change the coefficients of the defining polynomial equations. The PI would especially aim to understand situations when a family of surfaces degenerates to a very complicated, highly singular surface. The main aim is to develop methods that can be used to simplify such singularities. As part of this project, the PI also aims to study families of curves on surfaces, especially near the singular points of the surface.The PI aims to study families of algebraic surfaces of general type. There is a universal space for all families, called the moduli space. This moduli space is not compact, the PI intends to prove that a good compactification is given by considering surfaces that have semi-log canonical singularities and ample canonical class. The PI aims to develop a similar theory in higher dimensions, here the canonical models of varieties of general type provide the basic objects. As part of this project, the PI aims to understand the structure of semi-log canonical singularities, especially the combinatorial structure of their resolution. The PI aims to understand the structure of the dual complex of the resolution. A closely related but in principle independent project is to understand the structure of the Nash space of arcs through a singularity. The original conjectures of Nash were disproved in dimensions 3 and up, but there is a modification that takes these example into account. The PI aims to study both some very concrete examples and some general phenomena.
PI将研究表面及其变化。从计算的角度来看,最好的曲面是那些可以用多项式方程描述的曲面。不是每一个表面是这样的,但纳什证明,每一个表面可以近似的多项式定义的表面。该提案的主要目的是了解如何改变表面,如果我们改变定义多项式方程的系数。PI将特别旨在了解当一个曲面族退化为非常复杂的高度奇异曲面时的情况。其主要目的是开发方法,可以用来简化这种奇异性。作为该项目的一部分,PI还旨在研究曲面上的曲线族,特别是曲面的奇点附近。PI旨在研究一般类型的代数曲面族。有一个所有族的通用空间,称为模空间。这个模空间不是紧的,PI打算通过考虑具有半对数典范奇异性和丰富典范类的曲面来证明良好的紧化。PI的目标是在更高的维度上发展一个类似的理论,在这里,各种一般类型的规范模型提供了基本的对象。作为该项目的一部分,PI旨在了解半对数正则奇点的结构,特别是其分辨率的组合结构。PI旨在了解分辨率的对偶复合物的结构。一个密切相关但原则上独立的项目是通过奇点来理解纳什弧空间的结构。纳什最初的理论在3维及以上的维度中被证明是错误的,但有一个修改考虑了这些例子。PI旨在研究一些非常具体的例子和一些普遍现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Janos Kollar其他文献

Subadditivity of Kodaira dimension does not hold in positive characteristic
小平维度的次可加性在正特征中不成立
  • DOI:
    10.4171/cmh/517
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paolo Cascini;Sho Ejiri;Janos Kollar;Lei Zhang
  • 通讯作者:
    Lei Zhang
The Noether inequality for algebraic threefolds
代数三重的诺特不等式
  • DOI:
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jungkai A. Chen;Meng Chen;Chen Jiang;Janos Kollar
  • 通讯作者:
    Janos Kollar

Janos Kollar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Janos Kollar', 18)}}的其他基金

Moduli of Varieties of General Type
通用型品种模数
  • 批准号:
    1901855
  • 财政年份:
    2019
  • 资助金额:
    $ 67万
  • 项目类别:
    Continuing Grant
Problems in Higher Dimensional Algebraic Geometry
高维代数几何问题
  • 批准号:
    1502236
  • 财政年份:
    2015
  • 资助金额:
    $ 67万
  • 项目类别:
    Standard Grant
Algebraic geometry of moduli spaces
模空间的代数几何
  • 批准号:
    1001154
  • 财政年份:
    2010
  • 资助金额:
    $ 67万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Arithmetic and geometry of rational curves on K3 surfaces
FRG:协作研究:K3 曲面上有理曲线的算术和几何
  • 批准号:
    0968337
  • 财政年份:
    2010
  • 资助金额:
    $ 67万
  • 项目类别:
    Continuing Grant
Higher dimensional varieties and their applications
高维簇及其应用
  • 批准号:
    0758275
  • 财政年份:
    2008
  • 资助金额:
    $ 67万
  • 项目类别:
    Continuing Grant
Rationally Connected Varieties
合理关联的品种
  • 批准号:
    0500198
  • 财政年份:
    2005
  • 资助金额:
    $ 67万
  • 项目类别:
    Continuing Grant
Higher Dimensional Algebraic Varieties
高维代数簇
  • 批准号:
    0200883
  • 财政年份:
    2002
  • 资助金额:
    $ 67万
  • 项目类别:
    Continuing Grant
Higher Dimensional Algebraic Varieties
高维代数簇
  • 批准号:
    0096268
  • 财政年份:
    2000
  • 资助金额:
    $ 67万
  • 项目类别:
    Continuing Grant
Higher Dimensional Algebraic Varieties
高维代数簇
  • 批准号:
    9970855
  • 财政年份:
    1999
  • 资助金额:
    $ 67万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Structure of Algebraic Varieties
数学科学:代数簇的结构
  • 批准号:
    9622394
  • 财政年份:
    1996
  • 资助金额:
    $ 67万
  • 项目类别:
    Continuing Grant

相似国自然基金

正则半单Hessenberg varieties上的代数拓扑
  • 批准号:
    11901218
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Moduli of Varieties of General Type
通用型品种模数
  • 批准号:
    1901855
  • 财政年份:
    2019
  • 资助金额:
    $ 67万
  • 项目类别:
    Continuing Grant
Affine-invariant Fourier Restriction for general varieties
一般簇的仿射不变傅里叶限制
  • 批准号:
    2097249
  • 财政年份:
    2018
  • 资助金额:
    $ 67万
  • 项目类别:
    Studentship
Boundedness of Fano varieties
Fano 簇的有界性
  • 批准号:
    16K17558
  • 财政年份:
    2016
  • 资助金额:
    $ 67万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on characterization of the fundamental function sigma in the theory of Abelian functions via heat equations and general addition formulae
通过热方程和一般加法公式表征阿贝尔函数理论中的基本函数 sigma
  • 批准号:
    16K05082
  • 财政年份:
    2016
  • 资助金额:
    $ 67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study of linear systems on algebraic curves and its application for varieties of general type
代数曲线线性系统及其在一般类型簇中的应用研究
  • 批准号:
    22740016
  • 财政年份:
    2010
  • 资助金额:
    $ 67万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A general study on topology of algebraic varieties and its related topics
代数簇拓扑及其相关课题的一般研究
  • 批准号:
    19540094
  • 财政年份:
    2007
  • 资助金额:
    $ 67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A general study on topology, analysis and geometry of symbolic algebraic varieties
符号代数簇的拓扑、分析和几何一般研究
  • 批准号:
    17540088
  • 财政年份:
    2005
  • 资助金额:
    $ 67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of gemetric properties and arithmetic properties of higher dimenional algebraic varieties.
高维代数簇的几何性质和算术性质的研究。
  • 批准号:
    16340001
  • 财政年份:
    2004
  • 资助金额:
    $ 67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
General study of modular forms and arithmetic varieties
模形式和算术簇的一般研究
  • 批准号:
    16540042
  • 财政年份:
    2004
  • 资助金额:
    $ 67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of moduli spaces of projective varieties of general type
一般类型射影簇模空间的研究
  • 批准号:
    15340018
  • 财政年份:
    2003
  • 资助金额:
    $ 67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了