Discrete Problems in Harmonic Analysis, Ergodic Theorems and Singularities

调和分析、遍历定理和奇点中的离散问题

基本信息

  • 批准号:
    0202021
  • 负责人:
  • 金额:
    $ 9.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-15 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

Proposal Number: DMS-0202021PI: Akos MagyarABSTRACTThe proposed research will deal with several problems inharmonic analysis some of which are also of interest inergodic and number theory. The emphasis is on a combinationof techniques from analysis and of other fields such asanalytic number theory and singularity theory. The objectsof study are related to diophantine equations, maximalaverages over subvarieties and their discrete analogues,polynomial type ergodic theorems as well as oscillatoryintegrals and integral operators with degeneracies. A setof problems are discrete in nature, where mapping propertiesof operators related to classical exponential sums play acrucial role. Tough these appear as discrete analogues ofwell known constructs in analysis, they in turn can yieldto new insights both in ergodic and number theory. Anotherdirection is to study problems related to oscillatoryintegrals with degeneracies, where the usual "curvature"type conditions are replaced by assumptions on thesingularities or only assuming genericity.During roughly the past decade the scope of harmonicanalysis has been vastly extended by incorporating methodsfrom seemingly different fields of mathematics. This hasled to an essentially deeper understanding of basic partialdifferential equations under periodic conditions (such asthe nonlinear Schrodinger equation of quantum mechanics andthe Wave equation), new phenomena in ergodic theory meaningthat measurements do not have to be taken regularly butonly very rarely to understand physical processes. Theproposed research will concentrate on these types ofproblems Where a combination of methods of different fieldsof mathematics seems to be needed.
提案编号:DMS-0202021 PI:Akos Magyar摘要本研究将探讨调和分析中的几个问题,其中一些问题也与万有引力和数论有关.重点是结合技术分析和其他领域,如解析数论和奇异性理论。研究对象涉及丢番图方程、子簇上的极大平均及其离散类似、多项式型遍历定理以及退化积分和积分算子。一类本质上是离散的问题,其中与经典指数和有关的算子的映射性质起着关键作用。坚韧这些出现作为离散的类似物众所周知的结构在分析中,他们反过来可以yieldto新的见解都遍历和数论。另一个方向是研究与退化积分相关的问题,其中通常的“曲率“型条件被奇异性假设或仅假设一般性所取代。在大约过去的十年中,调和分析的范围通过结合来自看似不同的数学领域的方法而得到了极大的扩展。这使得人们对周期条件下的基本偏微分方程(如量子力学中的非线性薛定谔方程和波动方程)有了更深入的理解,遍历理论中的新现象意味着不必定期进行测量,但要理解物理过程,测量次数很少。拟议的研究将集中在这些类型的问题,其中不同领域的数学方法的组合似乎是必要的.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Akos Magyar其他文献

Estimates for the wave kernel near focal points on compact manifolds
  • DOI:
    10.1007/bf02921957
  • 发表时间:
    2001-03-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Akos Magyar
  • 通讯作者:
    Akos Magyar
On the Discrepancy of Point Distributions on Spheres and Hyperbolic Spaces
  • DOI:
    10.1007/s00605-002-0480-5
  • 发表时间:
    2002-08-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Akos Magyar
  • 通讯作者:
    Akos Magyar

Akos Magyar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Akos Magyar', 18)}}的其他基金

Some problems at the interface of harmonic analysis, number theory, and combinatorics
调和分析、数论和组合学接口的一些问题
  • 批准号:
    1600840
  • 财政年份:
    2016
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Continuing Grant
Discrete problems in harmonic analysis with applications to ergodic theory and additive number theory
调和分析中的离散问题及其在遍历理论和加性数论中的应用
  • 批准号:
    0803190
  • 财政年份:
    2008
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: New Trends in Harmonic Analysis
FRG:协作研究:谐波分析的新趋势
  • 批准号:
    0456490
  • 财政年份:
    2005
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Standard Grant
Problems in Analysis Related to Lattice Points and Singularities
与格点和奇点相关的分析问题
  • 批准号:
    9970899
  • 财政年份:
    1999
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Standard Grant

相似海外基金

Some problems in harmonic analysis
谐波分析中的一些问题
  • 批准号:
    2350101
  • 财政年份:
    2024
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Standard Grant
Problems in Harmonic Analysis Relating to Curvature
与曲率相关的谐波分析问题
  • 批准号:
    2246906
  • 财政年份:
    2023
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Standard Grant
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
  • 批准号:
    RGPIN-2021-03545
  • 财政年份:
    2022
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Discovery Grants Program - Individual
International Conference on Microlocal Analysis, Harmonic Analysis, and Inverse Problems
微局域分析、调和分析和反问题国际会议
  • 批准号:
    2154480
  • 财政年份:
    2022
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Standard Grant
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
  • 批准号:
    RGPIN-2021-03545
  • 财政年份:
    2021
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in harmonic analysis: decoupling and Bourgain-Brezis inequalities
调和分析中的问题:解耦和布尔干-布雷齐斯不等式
  • 批准号:
    FT200100399
  • 财政年份:
    2020
  • 资助金额:
    $ 9.33万
  • 项目类别:
    ARC Future Fellowships
Optimized Schwarz methods for time-harmonic wave problems in resonating cavities
谐振腔时谐波问题的优化 Schwarz 方法
  • 批准号:
    445906998
  • 财政年份:
    2020
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Research Grants
Harmonic Analysis, Boundary Value Problems, and Parabolic Rectifiability
谐波分析、边值问题和抛物线可整流性
  • 批准号:
    2000048
  • 财政年份:
    2020
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Standard Grant
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
  • 批准号:
    RGPIN-2015-04007
  • 财政年份:
    2019
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
  • 批准号:
    RGPIN-2015-04007
  • 财政年份:
    2018
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了