Some problems in harmonic analysis
谐波分析中的一些问题
基本信息
- 批准号:2350101
- 负责人:
- 金额:$ 32.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The principal investigator (PI) intends to delve into challenges situated at the junction of harmonic analysis, number theory, and dispersive equations. In addition to focusing on classical Fourier analysis, the PI aims to establish connections with diverse fields, including number theory, combinatorics, dispersive equations on tori, and Ergodic theory. Furthermore, the PI plans to mentor students, disseminate their findings through talks, and foster collaborations, thereby generating broader impacts.The PI plans to continue the research efforts in several areas. Firstly, the PI and his collaborators will delve into the rapidly advancing field of modern mathematics, particularly focusing on additive combinatorics alongside Fourier analysis. Within this realm, they aim to further explore Roth's theorem, a fundamental result that determines the minimum subset size required for the existence of arithmetic progressions within {1, ..., N}. Their work will extend their previous investigations into the polynomial Roth theorem on rings and/or finite fields. Secondly, in classical harmonic analysis, the PI is dedicated to investigating the conjectured pointwise convergence of the Bochner-Riesz mean on the plane, as proposed by Sogge and Tao. Thirdly, in collaboration with Yang, the PI has made strides in improving both Gauss's circle problem and Dirichlet's divisor problem. They believe there is still room for additional progress in these areas. Finally, the PI will continue his study of the Waring problem, which can be approached as a decoupling problem for a function whose Fourier transform is confined to a broken line.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
首席研究员(PI)打算深入研究调和分析、数论和色散方程交界处的挑战。除了专注于经典的傅立叶分析,PI的目标是建立与不同领域的联系,包括数论、组合学、环面上的色散方程和遍历理论。此外,国际学生协会计划指导学生,通过讲座传播他们的研究成果,并促进合作,从而产生更广泛的影响。国际学生协会计划继续在几个领域进行研究。首先,PI和他的合作者将深入研究快速发展的现代数学领域,特别是关注加法组合数学和傅立叶分析。在这个领域内,他们的目标是进一步探索Roth定理,这是一个基本结果,它确定了在{1,...,N}内存在算术级数所需的最小子集大小。他们的工作将扩展他们以前对环和/或有限域上的多项式Roth定理的研究。其次,在经典调和分析中,PI致力于研究Sogge和Tao提出的Bochner-Riesz平均在平面上的猜想的逐点收敛。第三,PI与杨合作,在改进高斯圆问题和狄里克莱特除数问题方面取得了长足的进步。他们认为,在这些领域仍有取得进一步进展的空间。最后,PI将继续他对瓦林问题的研究,该问题可以作为傅立叶变换被限制在虚线上的函数的解耦问题来处理。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaochun Li其他文献
Experimental studies on the short term effect of CO2 on the tensile failure of sandstone
CO2对砂岩拉伸破坏短期影响的实验研究
- DOI:
10.1016/j.egypro.2014.11.364 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Mingze Liu;Bing Bai;Xiaochun Li - 通讯作者:
Xiaochun Li
Effectiveness Research Using Electronic Health Records (EHRs)
使用电子健康记录 (EHR) 进行有效性研究
- DOI:
10.1002/9781118445112.stat07901 - 发表时间:
2016 - 期刊:
- 影响因子:24.7
- 作者:
Xiaochun Li;Changyu Shen;Lingling Li - 通讯作者:
Lingling Li
Concurrent CMF and reduced-dose radiation therapy (RT) in patients with early-stage breast cancer: updated results of a prospective trial
早期乳腺癌患者同步 CMF 和减量放射治疗 (RT):一项前瞻性试验的最新结果
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
J. Bellon;S. Come;R. Gelman;Xiaochun Li;L. Shulman;B. Silver;J. Harris;A. Recht - 通讯作者:
A. Recht
Agricultural producer service subsidies and agricultural pollution: An approach based on endogenous agricultural pollution
农业生产性服务补贴与农业污染:基于内源性农业污染的方法
- DOI:
10.1111/rode.12983 - 发表时间:
2023 - 期刊:
- 影响因子:1.6
- 作者:
Xiaochun Li;Huanan Fu - 通讯作者:
Huanan Fu
A Randomized, Placebo-Controlled, Double Blind Trial of the MDR Modulator, Zosuquidar, during Conventional Induction and Post-Remission Therapy for Pts > 60 Years of Age with Newly Diagnosed Acute Myeloid Leukemia (AML) or High-Risk Myelodysplastic Syndrome (HR-MDS): ECOG 3999.
一项随机、安慰剂对照、双盲试验,在传统诱导和缓解后治疗期间对 MDR 调节剂 Zosuquidar 对年龄 > 60 岁新诊断急性髓系白血病 (AML) 或高危骨髓增生异常综合征 (HR-
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
L. Cripe;Xiaochun Li;M. Litzow;E. Paietta;J. Rowe;S. Luger;M. Tallman - 通讯作者:
M. Tallman
Xiaochun Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaochun Li', 18)}}的其他基金
Fundamental Study on Nanotechnology Enabled Arc Welding of High Strength Aluminum Alloys
高强度铝合金纳米技术电弧焊基础研究
- 批准号:
2230828 - 财政年份:2023
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
EAGER: Properties and Manufacturing of Transformative Aluminum Nanocomposite Electrical Conductors
EAGER:变革性铝纳米复合电导体的性能和制造
- 批准号:
1639164 - 财政年份:2016
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Collaborative Research: Nanoparticle-Enabled Mechanisms for Growth Control in Immiscible Alloys under Regular Cooling
合作研究:常规冷却下不混溶合金生长控制的纳米颗粒机制
- 批准号:
1562252 - 财政年份:2016
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Laser Additive Manufacturing of Metal Matrix Nanocomposites
金属基纳米复合材料的激光增材制造
- 批准号:
1538694 - 财政年份:2015
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Collaborative Research: Friction Stir Processing of Cast Metal Matrix Nanocomposites
合作研究:铸造金属基纳米复合材料的搅拌摩擦加工
- 批准号:
1463627 - 财政年份:2015
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Study and Pragmatic Enhancement of Rock Cutting/Drilling for Oil Exploration through Embedded Thin Film Sensor Arrays in PCD Inserts
合作研究:通过 PCD 刀片中嵌入式薄膜传感器阵列进行石油勘探岩石切割/钻探的基础研究和实用增强
- 批准号:
1439351 - 财政年份:2014
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
SNM: Thermal Drawing of Fibers with Individually Addressable Nanoelectrode Array for Cellular Electrophysiology
SNM:用于细胞电生理学的具有可单独寻址纳米电极阵列的纤维热拉丝
- 批准号:
1449395 - 财政年份:2014
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Study and Pragmatic Enhancement of Rock Cutting/Drilling for Oil Exploration through Embedded Thin Film Sensor Arrays in PCD Inserts
合作研究:通过 PCD 刀片中嵌入式薄膜传感器阵列进行石油勘探岩石切割/钻探的基础研究和实用增强
- 批准号:
1300188 - 财政年份:2013
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Collaborative Research: Embedding of Thin Film Sensors in Advanced Ceramic Tools for Micro/Nano Scale Thermomechanical Measurements in and Near Tool-Workpiece Interface
合作研究:在先进陶瓷工具中嵌入薄膜传感器,用于工具-工件界面及其附近的微/纳米级热机械测量
- 批准号:
0824713 - 财政年份:2008
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Some problems at the interface of harmonic analysis, number theory, and combinatorics
调和分析、数论和组合学接口的一些问题
- 批准号:
1600840 - 财政年份:2016
- 资助金额:
$ 32.74万 - 项目类别:
Continuing Grant
Collaborative research: Universality phenomena and some hard problems of non-homogeneous Harmonic Analysis
合作研究:非齐次调和分析的普遍性现象和一些难题
- 批准号:
1301579 - 财政年份:2013
- 资助金额:
$ 32.74万 - 项目类别:
Continuing Grant
Collaborative Research: Universality Phenomena and Some Hard Problems of Non-homogeneous Harmonic Analysis
合作研究:非齐次谐波分析的普遍性现象和一些难题
- 批准号:
1265549 - 财政年份:2013
- 资助金额:
$ 32.74万 - 项目类别:
Continuing Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
- 批准号:
9970549 - 财政年份:1999
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
- 批准号:
0096030 - 财政年份:1999
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Some problems in harmonic analysis on reductive groups
约简群调和分析中的几个问题
- 批准号:
158359-1991 - 财政年份:1993
- 资助金额:
$ 32.74万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Sciences: Some Problems in Harmonic Analysis Related to Wavelets
数学科学:与小波相关的调和分析中的一些问题
- 批准号:
9204323 - 财政年份:1992
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Some problems in harmonic analysis on reductive groups
约简群调和分析中的几个问题
- 批准号:
105790-1991 - 财政年份:1992
- 资助金额:
$ 32.74万 - 项目类别:
Discovery Grants Program - Individual
Some problems in harmonic analysis on reductive groups
约简群调和分析中的几个问题
- 批准号:
105790-1991 - 财政年份:1991
- 资助金额:
$ 32.74万 - 项目类别:
Discovery Grants Program - Individual