The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups

表示论在与顺应性和局部紧群相关的调和分析问题中的作用

基本信息

  • 批准号:
    RGPIN-2015-04007
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

My research involves ideas and problems from a part of mathematics, which is known as functional and harmonic analysis. My colleagues and I have developed several new ideas in representation theory of Banach algebras and applied them in diverse questions such as ideal structure of the second duals, topological centers, character amenability, and topologically introverted spaces. ***The following is summary of my research program:***(1) Introverted spaces: Given a Banach algebra A and a topologically introverted subspace X of A*, Filali, Neufang, and I introduced the concept of subordinate representations and established a one-to-one correspondence between representations of A which are subordinate to X, and, the representations of the dual space X*. This phenomenon was previously only known in special cases. Our contribution established a general pattern, which can be applied to many different cases. We intend to characterize those representations of A that are subordinate to various introverted spaces X. This will help to obtain a better understanding of such spaces with the help of the coordinate functions of representations. ***(2) Amenability and relative boundaries: For uniform algebras, various types of boundaries have been subject of extensive studies in the literature. However, it is only very recently that relative boundaries and special points within them (strong boundary points, peak points, etc) have been introduced for normed spaces. Recently, I have been able to show some applications of these ideas to the theory of character amenable Banach algebras. The nature of relative boundaries, their relation with introverted spaces, and coordinate functions are natural questions awaiting further studies. *** ***(3) Topological centers: Filali, Neufang and I have developed a technique to obtain factorizations of operators in the group von Neumann algebras. Using this technique, we have been able to determine the topological centers of the group von Neumann algebras and the space of uniformly continuous functionals for certain groups. These ideas are very promising, and we intend to further develop the technique for a much wider range of spaces and their quotients, such as the space of p-pseudo measures and their quotients. ******This research will be of interest to a wide group of mathematicians working in modern analysis. It will provide projects for graduate student's master and PhD thesis. And it will benefit the advancement of a highly active area of research in modern mathematics. **
我的研究涉及到数学中的一个部分,即泛函和调和分析,涉及到思想和问题。我和我的同事们在Banach代数的表示理论中发展了几个新的想法,并将它们应用于各种问题,如第二对偶的理想结构、拓扑中心、特征随和和拓扑内倾空间。*以下是我的研究计划的总结:*(1)内倾空间:给定一个Banach代数A和A*的一个拓扑内倾子空间X,Filali、Neufang和我引入了从属表示的概念,并在A的从属于X的表示和对偶空间X*的表示之间建立了一一对应关系。这种现象以前只在特殊情况下才为人所知。我们的贡献建立了一个通用模式,可以应用于许多不同的情况。我们打算刻画A的从属于各种内倾空间X的表示,这将有助于借助表示的坐标函数更好地理解这类空间。*(2)可寻性和相对边界:对于一致代数,各种类型的边界在文献中一直是广泛研究的主题。然而,直到最近,赋范空间的相对边界和其中的特殊点(强边界点、峰点等)才被引入。最近,我已经能够展示这些思想在特征标服从Banach代数理论中的一些应用。相对边界的性质,它们与内向空间的关系,以及坐标函数,都是有待进一步研究的自然问题。*(3)拓扑中心:Filali,Neufang和我发展了一种技术来获得群von Neumann代数中算子的因子分解。利用这一技巧,我们已经能够确定群von Neumann代数的拓扑中心和某些群的一致连续泛函空间。这些想法是非常有前途的,我们打算将这一技术进一步发展到更广泛的空间及其商,如p-伪测度空间及其商。*这项研究将会引起从事现代分析工作的数学家的广泛兴趣。它将提供研究生硕士和博士论文的项目。这将有助于推动现代数学这一高度活跃的研究领域的发展。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SanganiMonfared, Mehdi其他文献

SanganiMonfared, Mehdi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SanganiMonfared, Mehdi', 18)}}的其他基金

The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
  • 批准号:
    RGPIN-2015-04007
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
  • 批准号:
    RGPIN-2015-04007
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
  • 批准号:
    RGPIN-2015-04007
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
  • 批准号:
    RGPIN-2015-04007
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic analysis, homology, and duality
调和分析、同源性和对偶性
  • 批准号:
    298449-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic analysis, homology, and duality
调和分析、同源性和对偶性
  • 批准号:
    298449-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic analysis, homology, and duality
调和分析、同源性和对偶性
  • 批准号:
    298449-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic analysis, homology, and duality
调和分析、同源性和对偶性
  • 批准号:
    298449-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic analysis, homology, and duality
调和分析、同源性和对偶性
  • 批准号:
    298449-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic analysis on p-convolution operators and the generalized Fourier algebras locally compact groups
p-卷积算子和广义傅立叶代数局部紧群的调和分析
  • 批准号:
    298449-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
  • 批准号:
    2401514
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
  • 批准号:
    24K16908
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: Representation Theory and Related Geometry
会议:表示论及相关几何
  • 批准号:
    2401049
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
  • 批准号:
    2348843
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Higher Representation Theory and Subfactors
更高表示理论和子因素
  • 批准号:
    2400089
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
  • 批准号:
    2416129
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
  • 批准号:
    2401178
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
  • 批准号:
    2401184
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
  • 批准号:
    22KJ2815
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
An application of mock modular forms to representation theory
模拟模块化形式在表示论中的应用
  • 批准号:
    23K19018
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了