International Conference on Microlocal Analysis, Harmonic Analysis, and Inverse Problems

微局域分析、调和分析和反问题国际会议

基本信息

  • 批准号:
    2154480
  • 负责人:
  • 金额:
    $ 3.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This award supports a conference on microlocal analysis, harmonic analysis, and inverse problems, which will take place August 15-17, 2022 at the University of Rochester. These three research areas have many points of intersection and have each seen tremendous progress in recent decades. Furthermore, research in these areas has led to advances in applied subjects such as diffuse and X-ray tomography, non-invasive imaging, and cloaking technology. The purpose of the conference is to bring together mathematicians working at the borders between these three research areas, to spur the cross-fertilization of ideas and generate new directions for the global research agenda. The conference also includes specific activities geared towards early-career mathematicians, and aims to provide such researchers with valuable experiences to help further their professional careers.The objective of the workshop is to bring together an international group of experts in three research areas: microlocal analysis, inverse problems, and harmonic analysis. A variety of topics are expected to receive prominent attention during the meeting. These include eigenfunction bounds for Laplace-Beltrami operators on Riemannian manifolds, regularity of Radon transform operators, Falconer’s distance set conjecture and some of its more recent generalizations, and connections between Fourier integral operators, inverse problems, and integral geometry. The conference program includes specific activities intended to promote a robust and informative dialogue among researchers from the three focus research areas, as well as opportunities for the professional development of junior researchers. https://people.math.rochester.edu/faculty/iosevich/allanconferencewebsite.htmlThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持将于2022年8月15日至17日在罗切斯特大学举行的关于微局部分析、谐波分析和逆问题的会议。这三个研究领域有许多交叉点,近几十年来都取得了巨大的进展。此外,这些领域的研究导致了应用学科的进步,如漫射和x射线断层扫描、非侵入性成像和隐形技术。会议的目的是将这三个研究领域的数学家聚集在一起,促进思想的交流,为全球研究议程创造新的方向。会议还包括针对早期职业数学家的具体活动,旨在为这些研究人员提供宝贵的经验,以帮助他们进一步发展职业生涯。研讨会的目标是汇集三个研究领域的国际专家小组:微局部分析、逆问题和谐波分析。各种议题预计将在会议期间得到突出关注。这些包括黎曼流形上拉普拉斯-贝尔特拉米算子的特征函数界、Radon变换算子的正则性、Falconer的距离集猜想及其最近的一些推广、傅立叶积分算子、反问题和积分几何之间的联系。会议计划包括旨在促进来自三个重点研究领域的研究人员之间强有力和信息丰富的对话的具体活动,以及初级研究人员的专业发展机会。https://people.math.rochester.edu/faculty/iosevich/allanconferencewebsite.htmlThis奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex Iosevich其他文献

The VC-Dimension and Point Configurations in $${\mathbb F}_q^2$$
  • DOI:
    10.1007/s00454-023-00570-5
  • 发表时间:
    2023-10-10
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    David Fitzpatrick;Alex Iosevich;Brian McDonald;Emmett Wyman
  • 通讯作者:
    Emmett Wyman
Generalized point configurations in math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msubsupmrowmi mathvariant="double-struck"F/mi/mrowmrowmiq/mi/mrowmrowmid/mi/mrow/msubsup/math
数学中的广义点配置 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" 类="math" msubsup mrow mi mathvariant="double-struck"F/mi mrow mrow mi q/mi mrow mrow mid/mi mrow/msubsup/math
  • DOI:
    10.1016/j.ffa.2024.102472
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Paige Bright;Xinyu Fang;Barrett Heritage;Alex Iosevich;Tingsong Jiang;Hans Parshall;Maxwell Sun
  • 通讯作者:
    Maxwell Sun
Intersections of sets and Fourier analysis
  • DOI:
    10.1007/s11854-016-0004-1
  • 发表时间:
    2016-03-17
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Suresh Eswarathasan;Alex Iosevich;Krystal Taylor
  • 通讯作者:
    Krystal Taylor
Spherical means and the restriction phenomenon
Improved incidence bounds over arbitrary finite fields via the VC-dimension theory
通过 VC 维理论改进了任意有限域上的发生率界
  • DOI:
    10.1016/j.ejc.2024.103928
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Alex Iosevich;Thang Pham;Steven Senger;Michael Tait
  • 通讯作者:
    Michael Tait

Alex Iosevich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex Iosevich', 18)}}的其他基金

On Problems in and Connections between Analysis, Geometry and Combinatorics
论分析、几何和组合学中的问题和联系
  • 批准号:
    2154232
  • 财政年份:
    2022
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
The Northeast Analysis Network
东北分析网
  • 批准号:
    1602652
  • 财政年份:
    2016
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
Geometric configuration and Fourier analysis
几何配置和傅里叶分析
  • 批准号:
    1045404
  • 财政年份:
    2010
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Continuing Grant
Geometric configuration and Fourier analysis
几何配置和傅里叶分析
  • 批准号:
    0901553
  • 财政年份:
    2009
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: New Trends in Harmonic Analysis
FRG:协作研究:谐波分析的新趋势
  • 批准号:
    0456306
  • 财政年份:
    2005
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
Gaussian Curvature, Geometric Combinatorics and the Fourier Transform
高斯曲率、几何组合和傅里叶变换
  • 批准号:
    0245369
  • 财政年份:
    2003
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
The Role of Gaussian Curvature in Harmonic Analysis and Related Areas
高斯曲率在调和分析及相关领域中的作用
  • 批准号:
    0087339
  • 财政年份:
    2000
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
Maximal Averages Over Hypersurfaces
超曲面上的最大平均值
  • 批准号:
    9996292
  • 财政年份:
    1998
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
Maximal Averages Over Hypersurfaces
超曲面上的最大平均值
  • 批准号:
    9706825
  • 财政年份:
    1997
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Conference: Strategies to Mitigate Implicit Bias and Promote an Ethos of Care in the Research Enterprise: A Convening
协作研究:会议:减轻隐性偏见并促进研究企业关怀精神的策略:召开会议
  • 批准号:
    2324401
  • 财政年份:
    2024
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
Conference: First Stars VII
会议:First Stars VII
  • 批准号:
    2337106
  • 财政年份:
    2024
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
Conference: Transforming Trajectories for Women of Color in Tech: A Meeting Series to Develop a Systemic Action Plan
会议:改变有色人种女性在科技领域的轨迹:制定系统行动计划的会议系列
  • 批准号:
    2333305
  • 财政年份:
    2024
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
  • 批准号:
    2334874
  • 财政年份:
    2024
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
Conference: Northeast Probability Seminar 2023-2025
会议:东北概率研讨会2023-2025
  • 批准号:
    2331449
  • 财政年份:
    2024
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Continuing Grant
Conference: Bridging Child Language Research to Practice for Language Revitalization
会议:将儿童语言研究与语言复兴实践联系起来
  • 批准号:
    2331639
  • 财政年份:
    2024
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了