Parallel Reliable Global Optimization with Interval Arithmetic
使用区间算法的并行可靠全局优化
基本信息
- 批准号:0202042
- 负责人:
- 金额:$ 9.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-10-01 至 2006-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this proposed RUI research, we will apply our current research results supported by NSFto design efficient parallel algorithms and to develop software to reliable numerical solutionsfor both unconstrained and constrained multivariate global nonlinear optimization problems.To achieve high reliability, even in the presence of uncertainty in the data, roundo error, andnonlinearities by finite digit computations, we apply interval arithmetic in this project. The basicalgorithms to be used are interval branch-and-bound method and interval Newton/generalizedbisection method.In designing parallel algorithm and developing portable software, we will take full advantagesof parallel computing to significantly reduce not only elapsed computation time but also totalamount of computation due to the spatial nature of the problem we address. To achieve high efficiency,we will balance workload dynamically among available processors through inter-processorcommunication. The software will be architecture independent. General sparsity and scalabilitywill be considered as well. The research results, parallel software package, installation and userguides, and testing examples will be freely disseminated through the Internet.
在RUI的研究中,我们将利用NSF支持的现有研究成果,设计高效的并行算法,并开发软件来可靠地求解无约束和有约束的多变量全局非线性优化问题。为了实现高可靠性,即使在数据存在不确定性,舍入误差和有限位计算的非线性的情况下,我们在这个项目中应用区间算法。所使用的基本算法是区间分支定界法和区间牛顿/广义二分法,在设计并行算法和开发可移植软件时,我们将采取充分的并行计算,不仅大大减少了计算时间,而且由于我们解决的问题的空间性质,总的计算量。为了达到高效率,我们将通过处理器间的通信在可用的处理器之间动态地平衡工作负载。该软件将独立于体系结构。一般稀疏性和可扩展性也将被考虑。研究结果、并行软件包、安装和用户指南以及测试示例将通过互联网免费传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chenyi Hu其他文献
Midpoint method and accuracy of variability forecasting
- DOI:
10.1007/s00181-009-0286-6 - 发表时间:
2009-03-19 - 期刊:
- 影响因子:1.900
- 作者:
Ling T. He;Chenyi Hu - 通讯作者:
Chenyi Hu
Efficient Calculation of Structural Similarity Threshold for the SCAN Network Clustering Algorithm
SCAN网络聚类算法结构相似度阈值的高效计算
- DOI:
10.1109/bibm.2011.49 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Vincent Yip;S. Kockara;Chenyi Hu - 通讯作者:
Chenyi Hu
Icon-based visualization of large high-dimensional datasets
大型高维数据集基于图标的可视化
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Ping Chen;Chenyi Hu;Wei Ding;H. Lynn;Yves Simon - 通讯作者:
Yves Simon
Fuzzy Partial-Order Relations for Intervals and Interval Weighted Graphs
区间和区间加权图的模糊偏序关系
- DOI:
10.1109/foci.2007.372157 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ping Hu;Chenyi Hu - 通讯作者:
Chenyi Hu
Task Scheduling on Flow Networks with Temporal Uncertainty
具有时间不确定性的流网络的任务调度
- DOI:
10.1109/foci.2007.372158 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ping Hu;M. Dellar;Chenyi Hu - 通讯作者:
Chenyi Hu
Chenyi Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chenyi Hu', 18)}}的其他基金
RUI: Knowledge Processing with Interval Methods
RUI:使用区间方法进行知识处理
- 批准号:
0727798 - 财政年份:2007
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant
RUI: Finding All Numerical Solutions for Large-Scale Nonlinear Systems of Equations Parallelly and Reliably in a Given Domain
RUI:在给定域中并行可靠地找到大规模非线性方程组的所有数值解
- 批准号:
9503757 - 财政年份:1995
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant
相似海外基金
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
- 批准号:
BB/X01858X/1 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Research Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant
STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
- 批准号:
2310323 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant
CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
- 批准号:
2336356 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
- 批准号:
EP/Y015886/1 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Fellowship
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Research Grant
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SPARQ(s) - Scalable, Precise, And Reliable positioning of color centers for Quantum computing and simulation
SPARQ(s) - 用于量子计算和模拟的可扩展、精确且可靠的色心定位
- 批准号:
10078083 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Collaborative R&D