Contact Problems in Kirchhoff's Nonlinear Theory of Rods

基尔霍夫非线性杆理论中的接触问题

基本信息

  • 批准号:
    0202668
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2006-07-31
  • 项目状态:
    已结题

项目摘要

The principal investigator will do research on non-linear problems in Kirchhoff's theory of elastic rods with the goals of (i) finding, for knotted and unknotted closed rods and open rods subject to terminal forces and torques, precise analytic representations of equilibrium configurations that show both isolated points and intervals of self-contact; (ii) deriving practical necessary and sufficient conditions for an equilibrium configuration to be stable in the sense that it gives a strict local minimum to elastic energy; (iii) obtaining insight into the dependence of bifurcation diagrams on knot type and the presence of intrinsic curvature; (iv) understanding the way in which the occurrence of plectonemic loops leads to hysteresis in torsion-stretching experiments for elastic rods and in single molecule manipulation experiments on DNA. The analytical representations of equilibrium configurations will be employed to develop a new Metropolis Monte Carlo procedure for evaluating partition functions for thermally fluctuating DNA molecules subject to specified constraints and end conditions. Graduate students will participate in this research which lies, as described below, at the interface between modern continuum mechanics and molecular biology. Each human cell has a meter of DNA in a nucleus that is less than 1 micron in diameter. Throughout the life of the cell, its compacted DNA is in a state of rapid, yet controlled, activity, because the regulation of life functions requires repeated transcription of appropriate portions of the genetic code into strands of RNA. The present research project addresses issues in theoretical mechanics that must be resolved before one can attain full understanding of the way in which highly compacted DNA is made available for the processes of transcription, replication, and recombination.
主要研究人员将对Kirchhoff弹性杆理论中的非线性问题进行研究,目标是:(I)对于有结和无结的闭杆和开杆,在终端力和力矩作用下,找到平衡构形的精确解析表示,表明孤立点和自接触间隔;(Ii)推导出平衡构形在给出严格的局部最小值的意义下稳定的实用充要条件;(Iii)深入了解分叉图对结型和本征曲率的依赖;(4)了解在弹性棒的扭转拉伸实验和DNA单分子操纵实验中,血小板增多环的出现导致迟滞的方式。平衡构型的解析表示将被用来开发一种新的Metropolis蒙特卡罗方法,用于计算受特定约束和末端条件约束的热波动DNA分子的配分函数。研究生将参与这项位于现代连续介质力学和分子生物学之间的研究,如下所述。每个人类细胞在直径不到1微米的细胞核中都有一米长的DNA。在细胞的整个生命过程中,其紧凑的DNA处于快速但可控的活动状态,因为生命功能的调节需要将适当的遗传密码部分重复转录到RNA链中。目前的研究项目解决了理论力学中必须解决的问题,然后才能充分了解高度紧凑的DNA是如何用于转录、复制和重组过程的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernard Coleman其他文献

Bernard Coleman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernard Coleman', 18)}}的其他基金

Bifurcations of Equilibria in DNA Elasticity
DNA 弹性平衡的分歧
  • 批准号:
    0514470
  • 财政年份:
    2005
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Nonlinear Continuum Mechanics
非线性连续介质力学
  • 批准号:
    9705016
  • 财政年份:
    1997
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Continuum Mechanics
数学科学:非线性连续介质力学
  • 批准号:
    9404580
  • 财政年份:
    1994
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Continuum Mechanics
数学科学:非线性连续介质力学
  • 批准号:
    9107010
  • 财政年份:
    1991
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Continuum Mechanics
数学科学:非线性连续介质力学
  • 批准号:
    8815924
  • 财政年份:
    1988
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Continuum Mechanics
数学科学:非线性连续介质力学
  • 批准号:
    8996119
  • 财政年份:
    1988
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Continuum Mechanics
数学科学:非线性连续介质力学
  • 批准号:
    8704834
  • 财政年份:
    1987
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Continuum Mechanics
数学科学:非线性连续介质力学
  • 批准号:
    8202647
  • 财政年份:
    1982
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Non-Linear Continuum Mechanics
非线性连续介质力学
  • 批准号:
    7902536
  • 财政年份:
    1979
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Non-Linear Continuum Mechanics
非线性连续介质力学
  • 批准号:
    7801519
  • 财政年份:
    1978
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似海外基金

Problems in Ramsey theory
拉姆齐理论中的问题
  • 批准号:
    2582036
  • 财政年份:
    2025
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
  • 批准号:
    2348475
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
  • 批准号:
    DP240101473
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
  • 批准号:
    FT230100154
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    ARC Future Fellowships
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
  • 批准号:
    23K25504
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
  • 批准号:
    2400014
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
  • 批准号:
    2349382
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了