Hyperbolic Conservation Laws in Continuum Physics
连续物理中的双曲守恒定律
基本信息
- 批准号:0202888
- 负责人:
- 金额:$ 17.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-09-01 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal #0202888PI: Constantine M. DafermosInstitution: Brown UniversityTitle: Hyperbolic Conservation Laws in Continuum PhysicsABSTRACTThe proposed research program lies on the interface between continuum physics and the theory of hyperbolic systems of conservation laws. It involves the following projects, which are motivated by the recent breakthrough of Bianchini and Bressan on the vanishing-viscosity method: (a) The study of balance laws with dissipative source terms through the vanishing-viscosity method; (b) An attempt to extend the layering method from scalar conservation laws to systems thereof; and (c) The study of the classical Riemann problem with the help of the new estimates of Bianchini and Bressan.Hyperbolic conservation laws belong to a class of nonlinear partial differential equations that govern the dynamics of materials with nonlinear elastic response, including solids like rubber and gases like air. The special feature of these equations is that the nonlinearity induces the development of discontinuities, akin to the familiar phenomenon of the breaking of waves on the beach. The discontinuities then propagate as shock waves. The proposed research program is to investigate a number of methods for constructing solutions with shocks. The objective is to settle questions of a theoretical nature, such as the issue of existence of solutions, by an approach that brings out the intimate connection between mathematics and physics, while suggesting, at the same time, algorithms for the actual computation of such solutions.
提案#0202888PI:Constantine M. Dafermos机构:布朗大学名称:连续介质物理中的双曲守恒律摘要本研究计划是在连续介质物理和双曲守恒律系统理论之间的接口上进行的。 由于Bianchini和Bressan最近在消失粘性方法上的突破,它包括以下几个项目:(a)用消失粘性方法研究含耗散源项的平衡律:(B)尝试将分层方法从标量守恒律推广到标量守恒律系统;(c)借助Bianchini和Bressan的新估计研究经典Riemann问题。双曲守恒律属于一类非线性偏微分方程,它支配具有非线性弹性响应的材料的动力学,包括橡胶等固体和空气等气体。 这些方程的特点是非线性引起了不连续性的发展,类似于人们熟悉的海滩上波浪破碎的现象。 然后,不连续性作为冲击波传播。 建议的研究计划是调查一些方法来构造的冲击的解决方案。 其目的是解决理论性质的问题,例如解的存在性问题,通过一种方法,揭示数学和物理之间的密切联系,同时提出实际计算这些解的算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Constantine Dafermos其他文献
A Portrait of Jerry Ericksen
- DOI:
10.1007/s10659-023-09984-x - 发表时间:
2023-01-19 - 期刊:
- 影响因子:1.400
- 作者:
Constantine Dafermos - 通讯作者:
Constantine Dafermos
Constantine Dafermos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Constantine Dafermos', 18)}}的其他基金
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244295 - 财政年份:2003
- 资助金额:
$ 17.57万 - 项目类别:
Standard Grant
Conference in Continuum Mechanics and Conservation Laws
连续体力学和守恒定律会议
- 批准号:
0087338 - 财政年份:2001
- 资助金额:
$ 17.57万 - 项目类别:
Standard Grant
Hyperbolic Conservation Laws in Continuum Physics
连续物理中的双曲守恒定律
- 批准号:
0103730 - 财政年份:2001
- 资助金额:
$ 17.57万 - 项目类别:
Standard Grant
Continuum Physics and Systems of Conservation Laws
连续体物理和守恒定律系统
- 批准号:
9803525 - 财政年份:1998
- 资助金额:
$ 17.57万 - 项目类别:
Continuing Grant
Continuum Physics & Systems of Conservation Laws
连续体物理
- 批准号:
9500574 - 财政年份:1995
- 资助金额:
$ 17.57万 - 项目类别:
Continuing Grant
Mathematical Sciences: Continuum Mechanics and Hyperbolic Systems of Conservation Laws
数学科学:连续介质力学和守恒定律的双曲系统
- 批准号:
9208284 - 财政年份:1992
- 资助金额:
$ 17.57万 - 项目类别:
Continuing Grant
Mathematical Sciences: Variational Inequalities in Equilibrium Analysis
数学科学:平衡分析中的变分不等式
- 批准号:
8809768 - 财政年份:1988
- 资助金额:
$ 17.57万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Analysis and Continuum Mechanics
数学科学:非线性分析和连续介质力学
- 批准号:
8504051 - 财政年份:1985
- 资助金额:
$ 17.57万 - 项目类别:
Continuing Grant
Stability Theory in Continuum Mechanics and Thermodynamics
连续介质力学和热力学稳定性理论
- 批准号:
8023824 - 财政年份:1981
- 资助金额:
$ 17.57万 - 项目类别:
Standard Grant
相似海外基金
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
- 批准号:
2306258 - 财政年份:2023
- 资助金额:
$ 17.57万 - 项目类别:
Standard Grant
Stability Theory for Systems of Hyperbolic Conservation Laws
双曲守恒定律系统的稳定性理论
- 批准号:
2306852 - 财政年份:2023
- 资助金额:
$ 17.57万 - 项目类别:
Standard Grant
Efficient Neural Network Based Numerical Schemes for Hyperbolic Conservation Laws
基于高效神经网络的双曲守恒定律数值方案
- 批准号:
2208518 - 财政年份:2022
- 资助金额:
$ 17.57万 - 项目类别:
Standard Grant
New developments in mathematical analysis of spatio-temporal nonuniform dynamics in quasilinear hyperbolic-parabolic conservation laws
拟线性双曲-抛物线守恒定律时空非均匀动力学数学分析新进展
- 批准号:
20H00118 - 财政年份:2020
- 资助金额:
$ 17.57万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Large solutions for systems of hyperbolic conservation laws and wave equations in one and multiple space dimensions
一维和多维空间双曲守恒定律和波动方程组的大解
- 批准号:
2008504 - 财政年份:2020
- 资助金额:
$ 17.57万 - 项目类别:
Standard Grant
Theory and Solution Methods for Generalized Nash Equilibrium Problems Governed by Networks of Nonlinear Hyperbolic Conservation Laws
非线性双曲守恒律网络治理的广义纳什均衡问题的理论与求解方法
- 批准号:
423771718 - 财政年份:2019
- 资助金额:
$ 17.57万 - 项目类别:
Priority Programmes
Shock capturing and numerical dissipation in high-order methods for hyperbolic conservation laws
双曲守恒定律高阶方法中的冲击捕获和数值耗散
- 批准号:
405315368 - 财政年份:2018
- 资助金额:
$ 17.57万 - 项目类别:
Research Grants
Systems of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程组
- 批准号:
1715012 - 财政年份:2017
- 资助金额:
$ 17.57万 - 项目类别:
Continuing Grant
CAREER: High Order Structure-Preserving Numerical Methods for Hyperbolic Conservation Laws
职业:双曲守恒定律的高阶结构保持数值方法
- 批准号:
1753581 - 财政年份:2017
- 资助金额:
$ 17.57万 - 项目类别:
Continuing Grant
Efficient hp-adaptive algorithms for the discontinuous Galerkin method for nonlinear hyperbolic conservation laws on graphics processing units (GPU)
用于图形处理单元 (GPU) 上非线性双曲守恒定律的不连续伽辽金方法的高效 HP 自适应算法
- 批准号:
475025-2015 - 财政年份:2017
- 资助金额:
$ 17.57万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral