Spectra, Geometry, and Asymptotics of Some Differential Equations of Mathematical Physics
数学物理中一些微分方程的谱、几何和渐近
基本信息
- 批准号:0204059
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project functional analysis will be used to understand how the shapes of systems are connected with energy levels, whether arising as eigenvalues of linear equations, such as the Schroedinger equation which describes quantum mechanical particles, or arising from nonlinear equations like those describing carrier transport in semiconductors. Small parameters are often present, whether Planck's constant or a physical dimension, and careful asymptotics are required in order to elucidate the role of the geometry of a domain. It is intended to seek useful estimates of energies and other physical quantities in terms of curvature, and to determine the shapes and geometric properties that optimize those quantities.This rigorous mathematical research will contribute to nanotechnology and quantum mechanics. Laboratories are beginning to produce very small-scale electrical devices, including quantum wires and quantum waveguides. The properties of these devices, such as conductivity and energy levels, are sensitive to their shape and configuration. This project will make these effects quantitative and help guide the design of devices. The work also has implications for other quite diverse phenomena described by similar equations. These include practical applications to the seepage of fluids and the stability of bulk matter, as well as purely mathematical applications to geometry.
在这个项目中,功能分析将被用来理解系统的形状是如何与能级联系在一起的,无论是作为线性方程的特征值产生的,比如描述量子力学粒子的薛定谔方程,还是从描述半导体载流子输运的非线性方程产生的。无论是普朗克常数还是物理维度,经常存在小参数,并且为了阐明域的几何形状的作用,需要仔细的渐近。它的目的是寻求能量和其他物理量在曲率方面的有用估计,并确定优化这些量的形状和几何性质。这项严谨的数学研究将有助于纳米技术和量子力学。实验室开始生产非常小的电子设备,包括量子线和量子波导。这些器件的特性,如电导率和能级,对它们的形状和结构很敏感。本项目将使这些影响量化,并有助于指导器件的设计。这项工作对其他由类似方程描述的相当不同的现象也有启示。这包括流体的渗流和大块物质的稳定性的实际应用,以及几何学的纯数学应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evans Harrell其他文献
Evans Harrell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evans Harrell', 18)}}的其他基金
Travel to the XIXth International Congress on Mathematical Physics, July 23--28, 2018, Montreal, Canada, and to Related Events
前往参加 2018 年 7 月 23 日至 28 日在加拿大蒙特利尔举行的第十九届国际数学物理大会以及相关活动
- 批准号:
1800629 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Conference on Mathematical Results in Quantum Physics; October 8-11, 2016, Georgia Institute of Technology
量子物理学数学结果会议;
- 批准号:
1643086 - 财政年份:2016
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Block Travel Grant for 1997 Congress of the IAMP and Development of New Scientific Collaboration in the Asian- Pacific Region; July, 13-19, 1997; Brisbane, Australia
为 1997 年 IAMP 大会和亚太地区新科学合作发展提供一次性旅费资助;
- 批准号:
9706755 - 财政年份:1997
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Spectral and Asymptotoc Problems of Mathematical Physics
数学物理的谱和渐近问题
- 批准号:
9622730 - 财政年份:1996
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral and Symptotic Problems of Mathematical Physics
数学科学:数学物理的谱和症状问题
- 批准号:
9211624 - 财政年份:1992
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Georgia Tech/UAB International Conference on Differential Equations and Mathematical Physics; March 22-28, 1992, Atlanta, GA
数学科学:佐治亚理工学院/UAB 微分方程和数学物理国际会议;
- 批准号:
9117290 - 财政年份:1992
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Spectral and Variational Problems of Mathematical Physics
数学科学:数学物理的谱和变分问题
- 批准号:
9005729 - 财政年份:1990
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral and Variational Problems of Mathematical Physics
数学科学:数学物理的谱和变分问题
- 批准号:
8801309 - 财政年份:1988
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operator Theory and Mathematical Physics
数学科学:算子理论和数学物理
- 批准号:
8504354 - 财政年份:1985
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operator Theory and Mathematical Physics
数学科学:算子理论和数学物理
- 批准号:
8300551 - 财政年份:1983
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Asymptotics in Complex Geometry: A Conference in Memory of Steve Zelditch
会议:复杂几何中的渐进:纪念史蒂夫·泽尔迪奇的会议
- 批准号:
2348566 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Geometry and Asymptotics of Schubert Polynomials, Graph Colorings, and Flows on Graphs
舒伯特多项式的几何和渐近、图着色和图流
- 批准号:
2154019 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Rational Points via Asymptotics and Geometry
职业:通过渐近学和几何学有理点
- 批准号:
1553459 - 财政年份:2016
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2016
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
The Geometry, Topology, Asymptotics and Number Theory of the Jones Polynomial
琼斯多项式的几何、拓扑、渐近和数论
- 批准号:
1105678 - 财政年份:2011
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant