RUI: Homotopy Theory of Commutative Algebras and its Applications
RUI:交换代数同伦论及其应用
基本信息
- 批准号:0206647
- 负责人:
- 金额:$ 10.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-15 至 2006-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0206647James M. TurnerAn active area of research in commutative algebra since the 1950s has involved the use of homological methods to characterize Noetherian rings and the homomorphisms between them. In the 1960s, simplicial methods were used to enable homotopy theory to apply to commutative algebras and develop richer homological techniques. This project seeks to use homotopy theory to characterize (simplicial) commutative algebras with a Noetherian property. Part of this effort will seek to resolve a conjecture of Quillen on the rigidity of the homology of commutative algebras and draw deeper connections between simplicial methods and methods from differential homological algebra. This project will also study how the cohomology of algebras can serve as host for obstructions to realizing a topological space from given algebraic data that functions as the value of a suitable homotopy invariant of the putative space. Attention will be paid to developing methods for computing such obstructions.Homotopy theory is a method of studying certain mathematical objects and the relations between them from a global perspective. In the case of geometric objects, certain algebraic invariants can be assigned to study and distinguish between homotopy types. Understanding the properties of these algebraic structures and how they relate to the geometric objects they are associated to are therefore important parts of this theory. This project seeks to further the understanding of the homotopy theory of geometric objects from the algebraic perspective. There are two aims to this project. The first is to develop further the homotopy theory of algebras that parallels that of geometric objects. The second aim seeks to make use of the homotopy of algebras and their various properties to understand the homotopy of spaces. This would involve studying the extent to which algebraic structures and properties can be lifted to corresponding structures and properties for geometric objects.
自20世纪50年代以来,交换代数研究的一个活跃领域涉及到使用同调方法来表征诺etherian环及其之间的同态。在20世纪60年代,简化方法使同伦理论能够应用于交换代数,并发展了更丰富的同伦技术。本项目寻求使用同伦理论来描述具有诺瑟性质的(简单)交换代数。这项工作的一部分将寻求解决Quillen关于交换代数同调刚性的猜想,并在简单方法和微分同调代数方法之间建立更深层次的联系。该项目还将研究代数的上同调如何成为阻碍从给定代数数据实现拓扑空间的宿主,该拓扑空间作为假定空间的合适同伦不变量的值。将注意发展计算这种障碍的方法。同伦理论是从全局角度研究某些数学对象及其相互关系的一种方法。在几何对象的情况下,可以指定某些代数不变量来研究和区分同伦类型。因此,理解这些代数结构的性质以及它们与所关联的几何对象之间的关系是该理论的重要组成部分。本项目旨在从代数的角度进一步理解几何物体的同伦理论。这个项目有两个目的。首先是进一步发展代数的同伦理论,使之与几何对象的同伦理论相平行。第二个目标是利用代数的同伦及其各种性质来理解空间的同伦。这将涉及研究代数结构和性质在多大程度上可以提升为几何对象的相应结构和性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Turner其他文献
Sacrifice and survival: the historiographic role of indentity and mission in Jesuit higher education of the New Orleans Province
牺牲与生存:身份与使命在新奥尔良省耶稣会高等教育中的史学作用
- DOI:
10.31390/gradschool_dissertations.4077 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
R. Platt;Eric Platt;Douglas Helton;Verlene Lee Helton;Virgil Lee;Eunice Platt;Martin Platt;James Turner - 通讯作者:
James Turner
Optimisation of a Femtosecond Pulse Synthesiser for High Harmonic Generation using the Semi-Classical Model
使用半经典模型优化用于高次谐波产生的飞秒脉冲合成器
- DOI:
10.1364/cleo_at.2020.jw2f.13 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Allan J. Pettipher;Bruce Weaver;D. Greening;Feng Li;James Turner;J. Marangos;J. Tisch - 通讯作者:
J. Tisch
The Marshal said ‘get out of town!’ egressing the night time economy: perceptions of student end users in a Welsh city
- DOI:
10.1057/s41300-023-00185-1 - 发表时间:
2023-09-04 - 期刊:
- 影响因子:1.100
- 作者:
Colin Rogers;James Turner;Allison Turner - 通讯作者:
Allison Turner
HP1γは第一減数分裂期における精母細胞のヒストンメチル化に必須である
HP1γ 对于第一次减数分裂期间精母细胞的组蛋白甲基化至关重要
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
成瀬智恵;高田幸;Yael Costa;阿部可奈恵;柿内太;James Turner;古関明彦;浅野雅秀 - 通讯作者:
浅野雅秀
減数分裂におけるHP1γの機能解析
HP1γ在减数分裂中的功能分析
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
成瀬智恵;高田幸;Yael Costa;阿部可奈恵;柿内太;James Turner;古関明彦;浅野雅秀 - 通讯作者:
浅野雅秀
James Turner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Turner', 18)}}的其他基金
RUI: Interactions between Homotopy Theory and Algebra
RUI:同伦理论与代数之间的相互作用
- 批准号:
1207746 - 财政年份:2012
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant
Scholars Award: An Envirotechnical Approach to Batteries, the Environment, and Questions of Sustainability
学者奖:电池、环境和可持续性问题的环境技术方法
- 批准号:
1230521 - 财政年份:2012
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant
RUI: Interactions Between Homotopy Theory and Commutative Algebra
RUI:同伦理论与交换代数之间的相互作用
- 批准号:
0508467 - 财政年份:2005
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant
Homotopy Theory of Commutative Algebras
交换代数的同伦论
- 批准号:
9972546 - 财政年份:1999
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant
NSF-NATO POSTDOCTORAL FELLOWSHIP
NSF-北约博士后奖学金
- 批准号:
9452951 - 财政年份:1994
- 资助金额:
$ 10.84万 - 项目类别:
Fellowship Award
Three-Dimensional Morphology Symposium to be held in New Orleans, November 10-15, 1991.
三维形态学研讨会将于 1991 年 11 月 10 日至 15 日在新奥尔良举行。
- 批准号:
9114304 - 财政年份:1991
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant
Simultaneous Physiology and 3-D Morphology of Neurons and Glial Cells
神经元和神经胶质细胞的同步生理学和 3D 形态学
- 批准号:
9108492 - 财政年份:1991
- 资助金额:
$ 10.84万 - 项目类别:
Continuing Grant
相似海外基金
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
Continuing Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
- 批准号:
2405191 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
- 批准号:
2427220 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant
Conference: A Panorama of Homotopy theory
会议:同伦理论全景
- 批准号:
2316253 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
- 批准号:
2304797 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
- 批准号:
2305392 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant
Classifying spaces, proper actions and stable homotopy theory
空间分类、适当作用和稳定同伦理论
- 批准号:
EP/X038424/1 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Research Grant
Applications of homotopy theory to algebraic geometry and physics
同伦理论在代数几何和物理学中的应用
- 批准号:
2305373 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant














{{item.name}}会员




