RUI: Interactions Between Homotopy Theory and Commutative Algebra

RUI:同伦理论与交换代数之间的相互作用

基本信息

  • 批准号:
    0508467
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-15 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

In recent years, there have been many deep connections found betweenhomotopy theory and commutative algebra. This research continues thispursuit in several such directions. First, the study of topological spacesor structured spectra through algebraic invariants, such as homotopy or(co-)homology, can be studied from the global perspective on thealgebraic side via a moduli space of structures. A fine invariant forstudying such a moduli space is the cotangent complex associated to thegiven algebra. One part of this research, in joint work with Paul Goerss,will look to extend the study of Hopkins-Miller-Mahowald-Goerss ontopological modular forms from, which realized Lubin-Tate algebras asE_\infinity ring spectra and calculated their endomorphisms, to moregeneral Shimura varieties. In a similar vein, this research willseek to clarify, in joint work with David Blanc and Mark Johnson, how avariation of this cotangent complex controls the question of realizing a diagram of\Pi-algebras as a diagram of spaces, by looking for ways of connectingcohomological obstructions to things like Toda brackets. Finally, thisresearch will seek to extend Grothendieck's program for classifying smoothschemes to more general schemes in the setting of derived algebraic geometry.The driving mechanism will be to take the cotangent complex to be the properanalogue of the Kahler differentials and generalize accordingly. This wouldframe the approach of characterizing commutative algebras using thesimplicial resolutions (as ultimately articulated by M. Andre and D. Quillen) inan algebraic geometric setting.Throughout the history of string theory in theoretical physics, surprising connectionshave been made between several areas of pure mathematics - in particular, numbertheory and topology. One such connection has been made between the arithmetic ofelliptic curves and modular forms, important in A. Wiles resolution of Fermat's LastTheorem, and cohomology theories in topology - the connectionbeing relevant to string theory via the concept of elliptic genera. From the topologist'sstandpoint, some of the relevant properties being sought can be expressed in terms ofwhether the cohomology's associated spectrum possesses a suitable multiplicative structure.The question of realizing such structures can lead to questions regarding ways in whichcommutative algebras and homotopical structures in topology interact. The goal of thisresearch is to further understand such interactions in two ways. The first is to collectivelystudy all possible multiplicative structures on a spectrum with a prescribed algebraic datavia the concept of a moduli space. The other approach utilizes a global geometric device,called a stack, to understand these multiplicative spectra collectively in the context of amore homotopical notion of algebraic geometry. The aim of this research will then focuson studying other possible multiplicative spectra associated to cohomology theories which arisefrom more general arithmetic forms, such as automorphic forms. Involved in this projectis also the aim to characterize basic types of objects in this homotopical algebraic geometryand drawing connections to recent homological characterizations of algebras.
近年来,同伦理论与交换代数之间有着许多深刻的联系。这项研究在几个这样的方向上继续这种追求。首先,通过代数不变量(如同伦或(上)同调)研究拓扑空间或结构谱,可以通过结构的模空间从代数方面的全局视角进行研究。研究这种模空间的一个很好的不变量是与给定代数相关的余切复形。本研究的一部分是与Paul Goerss合作,将Hopkins-Miller-Mahowald-Goerss关于拓扑模形式的研究从把Lubin-Tate代数实现为E_\无穷环谱并计算它们的自同态扩展到更一般的Shimura簇。同样,本研究将与大卫布兰克和马克约翰逊共同努力,通过寻找将上同调障碍物连接到户田括号之类的东西的方法,来澄清这种余切复形的变化如何控制将π-代数的图实现为空间图的问题。 最后,本研究将寻求扩展Grothendieck的程序分类光滑计划,以更一般的计划在设置派生代数几何.驱动机制将采取余切复是适当的模拟的Kahler微分和推广相应的.这将构成用单纯分解刻画交换代数的方法(最终由M. Andre和D.在理论物理学中的弦理论的整个历史中,在纯数学的几个领域--特别是数论和拓扑学--之间建立了令人惊讶的联系。在椭圆曲线的算术和模形式之间已经建立了这样一种联系,这在A.怀尔斯解决费马的最后定理,和上同调理论的拓扑-连接相关的弦理论通过概念的椭圆属。 从拓扑学家的观点来看,所寻求的一些相关性质可以用上同调的相关谱是否具有合适的乘法结构来表示,实现这种结构的问题可以引出关于交换代数和拓扑中同伦结构相互作用的方式的问题。本研究的目的是从两个方面进一步了解这种相互作用。第一种方法是通过模空间的概念,在给定的代数数据下,研究谱上所有可能的乘法结构。另一种方法利用一个全球性的几何设备,称为堆栈,理解这些乘法谱集体在代数几何的同伦概念的上下文中。本研究的目的,然后将集中在研究其他可能的乘法谱相关的上同调理论arisefrom更一般的算术形式,如自守形式。参与这个项目的目的也是为了表征基本类型的对象在这个同伦代数几何和绘图连接到最近的同调表征代数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Turner其他文献

Optimisation of a Femtosecond Pulse Synthesiser for High Harmonic Generation using the Semi-Classical Model
使用半经典模型优化用于高次谐波产生的飞秒脉冲合成器
Sacrifice and survival: the historiographic role of indentity and mission in Jesuit higher education of the New Orleans Province
牺牲与生存:身份与使命在新奥尔良省耶稣会高等教育中的史学作用
  • DOI:
    10.31390/gradschool_dissertations.4077
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Platt;Eric Platt;Douglas Helton;Verlene Lee Helton;Virgil Lee;Eunice Platt;Martin Platt;James Turner
  • 通讯作者:
    James Turner
The Marshal said ‘get out of town!’ egressing the night time economy: perceptions of student end users in a Welsh city
  • DOI:
    10.1057/s41300-023-00185-1
  • 发表时间:
    2023-09-04
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Colin Rogers;James Turner;Allison Turner
  • 通讯作者:
    Allison Turner
HP1γは第一減数分裂期における精母細胞のヒストンメチル化に必須である
HP1γ 对于第一次减数分裂期间精母细胞的组蛋白甲基化至关重要
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    成瀬智恵;高田幸;Yael Costa;阿部可奈恵;柿内太;James Turner;古関明彦;浅野雅秀
  • 通讯作者:
    浅野雅秀
減数分裂におけるHP1γの機能解析
HP1γ在减数分裂中的功能分析
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    成瀬智恵;高田幸;Yael Costa;阿部可奈恵;柿内太;James Turner;古関明彦;浅野雅秀
  • 通讯作者:
    浅野雅秀

James Turner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Turner', 18)}}的其他基金

RUI: Interactions between Homotopy Theory and Algebra
RUI:同伦理论与代数之间的相互作用
  • 批准号:
    1207746
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Scholars Award: An Envirotechnical Approach to Batteries, the Environment, and Questions of Sustainability
学者奖:电池、环境和可持续性问题的环境技术方法
  • 批准号:
    1230521
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Homotopy Theory of Commutative Algebras and its Applications
RUI:交换代数同伦论及其应用
  • 批准号:
    0206647
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Homotopy Theory of Commutative Algebras
交换代数的同伦论
  • 批准号:
    9972546
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-NATO POSTDOCTORAL FELLOWSHIP
NSF-北约博士后奖学金
  • 批准号:
    9452951
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
Three-Dimensional Morphology Symposium to be held in New Orleans, November 10-15, 1991.
三维形态学研讨会将于 1991 年 11 月 10 日至 15 日在新奥尔良举行。
  • 批准号:
    9114304
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Simultaneous Physiology and 3-D Morphology of Neurons and Glial Cells
神经元和神经胶质细胞的同步生理学和 3D 形态学
  • 批准号:
    9108492
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: RUI: The role of interactions between organic components on aerosol hygroscopicity
合作研究:RUI:有机成分之间的相互作用对气溶胶吸湿性的作用
  • 批准号:
    2124491
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Interactions between language and cognition in the early acquisition of spatial language
RUI:空间语言早期习得中语言与认知之间的相互作用
  • 批准号:
    1650861
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Studies on the Interactions Between the yFACT and TORC1 Complexes and Chromatin During transcription Elongation
RUI:转录延伸过程中 yFACT 和 TORC1 复合物与染色质之间相互作用的研究
  • 批准号:
    1243680
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RUI: NMR Investigation of the Role of Protein Dynamics in the Selective Interactions between RGS and Galpha Signaling Proteins
RUI:蛋白质动力学在 RGS 和 Galpha 信号蛋白选择性相互作用中作用的 NMR 研究
  • 批准号:
    1158177
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Interactions between Homotopy Theory and Algebra
RUI:同伦理论与代数之间的相互作用
  • 批准号:
    1207746
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Investigation of the mechanisms that regulate interactions between the transcription elongation factor Spt16 and chromatin.
RUI:研究调节转录延伸因子 Spt16 和染色质之间相互作用的机制。
  • 批准号:
    0919241
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RUI: Interactions between Number Theory and Ergodic Theory
RUI:数论与遍历理论之间的相互作用
  • 批准号:
    0701281
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Investigation of Interactions between Autotrophs and Heterotrophs in Periphyton attached to Emergent Plant Detritus and their Effects on Wetland Plant Decay
RUI:挺水植物碎屑附着的附生生物中自养生物和异养生物之间的相互作用及其对湿地植物腐烂的影响的研究
  • 批准号:
    0315686
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RUI: Studies On The Cell Physiology of Insect Ovarian Follicles, Interactions Between Epithelium and Oocyte
RUI:昆虫卵巢卵泡细胞生理学、上皮与卵母细胞相互作用的研究
  • 批准号:
    0314827
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
C-RUI: A Multi-Disciplinary Approach to the Ecological and Evolutionary Interactions Between Food-Hoarding Animals and the Oaks
C-RUI:利用多学科方法研究食物囤积动物与橡树之间的生态和进化相互作用
  • 批准号:
    9978807
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了