Some Problems in Structural and Lattice Complexity
结构和格复杂性的一些问题
基本信息
- 批准号:0208013
- 负责人:
- 金额:$ 29.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-09-01 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is a study of computational complexity theory, in particulara study of structural complexity theory and some compelxity problemsrelating to lattice problems. Computational complexity theory isthe study of the inherent hardness of computational problems, bothin the worst-case measure as well as in the average-case measure.This theory is the underpinning of all computer security based on thehardness or insolvability of computational problems.The investigator will study the interrelationship between a number ofcomplexity classes, especially those between determinisitic P and thesecond level of the polynomial time hierarchy, building on the recentbreakthrough concerning the class S2, the symmetric second level class ofthe hierarchy. The investigator also explores a notion of persistentNP-hardness. This is to be an intermediate level of complexitymeasure between worst-case hardness and average-case complexityin the framework of Levin and others. In lattice problems, the investigator will search for moderately efficient algorithmsfor the shortest vector problem and the closest vector problem,both in the worst case measure as well as in the average case measure.The investigator will study their connections to random lattices,and potential applications to the design of secure public-keycryptosystems based on assumptions of hadness in the worst case complexity only.
本项目主要研究计算复杂性理论,特别是结构复杂性理论以及与格问题相关的一些复杂性问题。 计算复杂性理论是研究计算问题的内在困难性的理论,无论是在最坏情况下还是在平均情况下。这一理论是基于计算问题的困难性或不可解性的所有计算机安全性的基础。研究者将研究许多复杂性类别之间的相互关系,特别是确定性P和多项式时间层次的第二层之间的关系,建立在最近关于类S2的突破之上,S2是层次结构的对称第二层类。 研究人员还探讨了一个概念的persistentNP-硬度。 这是Levin和其他人的框架中最坏情况下的困难和平均情况下的复杂性之间的一个中间水平的复杂性度量。在格问题中,研究者将寻找最短向量问题和最接近向量问题的适度有效算法,无论是在最坏情况下的措施,以及在平均情况下的措施。研究者将研究他们的连接到随机格,和潜在的应用设计安全的公钥密码系统的基础上假设的最坏情况下的复杂性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin-Yi Cai其他文献
A computational proof of complexity of some restricted counting problems
- DOI:
10.1016/j.tcs.2010.10.039 - 发表时间:
2011-05-20 - 期刊:
- 影响因子:
- 作者:
Jin-Yi Cai;Pinyan Lu;Mingji Xia - 通讯作者:
Mingji Xia
Quadratic Lower Bound for Permanent Vs. Determinant in any Characteristic
- DOI:
10.1007/s00037-009-0284-2 - 发表时间:
2010-02-24 - 期刊:
- 影响因子:1.000
- 作者:
Jin-Yi Cai;Xi Chen;Dong Li - 通讯作者:
Dong Li
A Note on the Determinant and Permanent Problem
- DOI:
10.1016/0890-5401(90)90036-h - 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
Jin-Yi Cai - 通讯作者:
Jin-Yi Cai
Holographic reduction, interpolation and hardness
全息还原、插值和硬度
- DOI:
10.1007/s00037-012-0044-6 - 发表时间:
2012-05 - 期刊:
- 影响因子:1.4
- 作者:
Jin-Yi Cai;Pinyan Lu;Mingji Xia - 通讯作者:
Mingji Xia
Dichotomy for Holant∗ Problems on the Boolean Domain
- DOI:
10.1007/s00224-020-09983-8 - 发表时间:
2020-06-22 - 期刊:
- 影响因子:0.400
- 作者:
Jin-Yi Cai;Pinyan Lu;Mingji Xia - 通讯作者:
Mingji Xia
Jin-Yi Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin-Yi Cai', 18)}}的其他基金
AF: Small: Classification Program for Counting Problems
AF:小:计数问题的分类程序
- 批准号:
1714275 - 财政年份:2017
- 资助金额:
$ 29.41万 - 项目类别:
Standard Grant
AF: Small: Counting Problems, Holographic Algorithms and Dichotomy Theorems
AF:小:计数问题、全息算法和二分定理
- 批准号:
1217549 - 财政年份:2012
- 资助金额:
$ 29.41万 - 项目类别:
Standard Grant
Counting Problems and Dichotomy Theorems
计数问题和二分定理
- 批准号:
0914969 - 财政年份:2009
- 资助金额:
$ 29.41万 - 项目类别:
Standard Grant
Some Problems in Complexity Theory
复杂性理论中的一些问题
- 批准号:
0511679 - 财政年份:2005
- 资助金额:
$ 29.41万 - 项目类别:
Continuing Grant
Worst-Case v.s. Average-Case Complexity and Applications to Secure Cryptography
最坏情况与最差情况
- 批准号:
0196197 - 财政年份:2000
- 资助金额:
$ 29.41万 - 项目类别:
Standard Grant
Worst-Case v.s. Average-Case Complexity and Applications to Secure Cryptography
最坏情况与最差情况
- 批准号:
9820806 - 财政年份:1999
- 资助金额:
$ 29.41万 - 项目类别:
Standard Grant
PYI: A Study of Computational Complexity Theory
PYI:计算复杂性理论研究
- 批准号:
9496107 - 财政年份:1993
- 资助金额:
$ 29.41万 - 项目类别:
Continuing Grant
相似海外基金
Bidirectional Evolutionary Structural Optimization for Transient Problems
瞬态问题的双向进化结构优化
- 批准号:
DP230103180 - 财政年份:2023
- 资助金额:
$ 29.41万 - 项目类别:
Discovery Projects
Smart Structural Capacity Upgrade System to Address Problems associated with Ground Movements
智能结构能力升级系统可解决与地面移动相关的问题
- 批准号:
570113-2022 - 财政年份:2022
- 资助金额:
$ 29.41万 - 项目类别:
Postgraduate Scholarships - Doctoral
Structural problems in Integer Programming
整数规划中的结构问题
- 批准号:
539489-2019 - 财政年份:2019
- 资助金额:
$ 29.41万 - 项目类别:
University Undergraduate Student Research Awards
Development of high-dose time-resolved X-ray footprinting technologies to enable detailed structural and kinetics information to be obtained for challenging biological problems
开发高剂量时间分辨 X 射线足迹技术,以获得具有挑战性的生物问题的详细结构和动力学信息
- 批准号:
10446793 - 财政年份:2018
- 资助金额:
$ 29.41万 - 项目类别:
Development of high-dose time-resolved X-ray footprinting technologies to enable detailed structural and kinetics information to be obtained for challenging biological problems
开发高剂量时间分辨 X 射线足迹技术,以获得具有挑战性的生物问题的详细结构和动力学信息
- 批准号:
10630950 - 财政年份:2018
- 资助金额:
$ 29.41万 - 项目类别:
Structural results and their application in scheduling and packing problems
结构结果及其在调度和打包问题中的应用
- 批准号:
335406402 - 财政年份:2017
- 资助金额:
$ 29.41万 - 项目类别:
Research Grants
Study on the Social Governance for Structural Problems in Promotion System of Community Sport
社区体育推广体系结构性问题的社会治理研究
- 批准号:
16K01649 - 财政年份:2016
- 资助金额:
$ 29.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: Structural and enumerative problems on simplicial complexes
RUI:单纯复形的结构和枚举问题
- 批准号:
1600048 - 财政年份:2016
- 资助金额:
$ 29.41万 - 项目类别:
Standard Grant
Structural problems and minimax relations in graphs and matroids
图和拟阵中的结构问题和极小极大关系
- 批准号:
238811-2012 - 财政年份:2014
- 资助金额:
$ 29.41万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithm design based on graph structural properties for graph optimization problems
基于图结构特性的图优化问题的高效算法设计
- 批准号:
26330017 - 财政年份:2014
- 资助金额:
$ 29.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)