AF: Small: Classification Program for Counting Problems
AF:小:计数问题的分类程序
基本信息
- 批准号:1714275
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is a study of the computational complexity of counting problems. The PI aims to classify the complexity of problems known as Sum-of-Product computations. These counting problems come from all parts of computer science, and even other fields of study. They are naturally defined and include such counting problems as vertex covers, graph colorings, and graph matchings. There is also a strong connection to problems studied in statistical physics.In computational complexity theory, there is no higher aim than to achieve a complete classification of a wide class of computational problems. This is usually done in terms of the P and NP theory, where P and NP denote problems computable in polynomial time by deterministic and nondeterministic algorithms, respectively. There has been strong interest in the PI's classification program, especially with the concept of holographic algorithms. There is also a significant amount of computational experimentation in the search for the right formulation of the classification, providing an opportunity to engage undergraduate students in research.A sharper delineation between what is or is not efficiently computable will have broader impact within computer science and beyond. Within CS, a substantial body of work in AI is centered around similar models called partition functions. Outside computer science, there is a long tradition in statistical physics to study partition functions, and this study informs the so-called exactly solved models.In more technical terms, these are computations defined as sum_sigma prod_f f | sigma, where the f's are local constraint functions, and the sigmas are assignments to local variables. There are three related frameworks to study these problems.(1) Spin systems or graph homomorphisms,(2) Counting CSP problems, and (3) Holant problems.Over the past several years, the following thesis has gained considerable evidence, namely a large family of Sum-of-Product computations can be classified into exactly three categories with an explicit criterion on the constraint function set:(I) Computable in P;(II) #P-hard for general graphs, but solvable in P for planar graphs; and(III) #P-hard even for planar graphs.Furthermore, for Spin systems and Counting CSP, category (II) corresponds precisely to those problems which can be solved by holographic algorithms with matchgates. But for Holant problems, there are additional novel tractable classes of problems. The PI plans to prove classification theorems that apply to asymmetric constraint functions. If this can be settled for asymmetric as well as symmetric constraint functions, it will be a unifying result, answering questions that are open at least since the time of Kasteleyn in the 1960's.
这个项目是研究计数问题的计算复杂性。 PI的目的是对称为乘积和计算的问题的复杂性进行分类。 这些计数问题来自计算机科学的各个部分,甚至其他研究领域。 它们是自然定义的,包括顶点覆盖、图着色和图匹配等计数问题。 与统计物理学研究的问题也有很强的联系。在计算复杂性理论中,没有比实现广泛一类计算问题的完整分类更高的目标了。 这通常是根据P和NP理论来完成的,其中P和NP分别表示可通过确定性算法和非确定性算法在多项式时间内计算的问题。 人们对PI的分类程序产生了浓厚的兴趣,特别是全息算法的概念。 在寻找正确的分类公式的过程中,也有大量的计算实验,这为本科生参与研究提供了机会。 在CS中,人工智能的大量工作都围绕着类似的模型,称为分区函数。 在计算机科学之外,统计物理学中有一个研究配分函数的悠久传统,这项研究为所谓的精确求解模型提供了信息。|sigma,其中f是局部约束函数,sigma是对局部变量的赋值。 有三个相关的框架来研究这些问题。(1)Spin系统或图同态,(2)计数CSP问题,(3)Holant问题,在过去的几年中,下列论文已经获得了相当多的证据,即一个大的乘积和计算族可以被精确地分为三类,并给出了一个关于约束函数集的明确标准:(I)在P中可计算,(II)对一般图是P-难的,但对平面图是P中可解的,(III)对一般图是P-难的,但对平面图是P中可解的。(III)甚至对于平面图也是P-难的,而且对于自旋系统和计数CSP,(II)类恰好对应于那些可以用带有匹配门的全息算法解决的问题. 但是对于Holant问题,还有其他新的易于处理的问题类别。 PI计划证明适用于非对称约束函数的分类定理。如果这可以解决的非对称以及对称约束功能,这将是一个统一的结果,回答问题,是开放的,至少自时间的Kasteleyn在20世纪60年代。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
第 11 届理论计算机科学创新会议 (ITCS 2020)。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Cai, Jin-Yi;Govorov, Artem
- 通讯作者:Govorov, Artem
Complexity classification of the six-vertex model
- DOI:10.1016/j.ic.2018.01.003
- 发表时间:2017-02
- 期刊:
- 影响因子:0
- 作者:Jin-Yi Cai;Zhiguo Fu;Mingji Xia
- 通讯作者:Jin-Yi Cai;Zhiguo Fu;Mingji Xia
Holographic algorithms beyond matchgates
超越匹配门的全息算法
- DOI:10.1016/j.ic.2018.01.002
- 发表时间:2018
- 期刊:
- 影响因子:1
- 作者:Cai, Jin-Yi;Guo, Heng;Williams, Tyson
- 通讯作者:Williams, Tyson
A dichotomy for bounded degree graph homomorphisms with nonnegative weights
- DOI:10.4230/lipics.icalp.2020.66
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:A. Govorov;Jin-Yi Cai;Martin E. Dyer
- 通讯作者:A. Govorov;Jin-Yi Cai;Martin E. Dyer
47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
第 47 届自动机、语言和编程国际学术研讨会 (ICALP 2020)。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Cai, Jin-Yi Liu
- 通讯作者:Cai, Jin-Yi Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin-Yi Cai其他文献
A computational proof of complexity of some restricted counting problems
- DOI:
10.1016/j.tcs.2010.10.039 - 发表时间:
2011-05-20 - 期刊:
- 影响因子:
- 作者:
Jin-Yi Cai;Pinyan Lu;Mingji Xia - 通讯作者:
Mingji Xia
Quadratic Lower Bound for Permanent Vs. Determinant in any Characteristic
- DOI:
10.1007/s00037-009-0284-2 - 发表时间:
2010-02-24 - 期刊:
- 影响因子:1.000
- 作者:
Jin-Yi Cai;Xi Chen;Dong Li - 通讯作者:
Dong Li
A Note on the Determinant and Permanent Problem
- DOI:
10.1016/0890-5401(90)90036-h - 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
Jin-Yi Cai - 通讯作者:
Jin-Yi Cai
Holographic reduction, interpolation and hardness
全息还原、插值和硬度
- DOI:
10.1007/s00037-012-0044-6 - 发表时间:
2012-05 - 期刊:
- 影响因子:1.4
- 作者:
Jin-Yi Cai;Pinyan Lu;Mingji Xia - 通讯作者:
Mingji Xia
Dichotomy for Holant∗ Problems on the Boolean Domain
- DOI:
10.1007/s00224-020-09983-8 - 发表时间:
2020-06-22 - 期刊:
- 影响因子:0.400
- 作者:
Jin-Yi Cai;Pinyan Lu;Mingji Xia - 通讯作者:
Mingji Xia
Jin-Yi Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin-Yi Cai', 18)}}的其他基金
AF: Small: Counting Problems, Holographic Algorithms and Dichotomy Theorems
AF:小:计数问题、全息算法和二分定理
- 批准号:
1217549 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Counting Problems and Dichotomy Theorems
计数问题和二分定理
- 批准号:
0914969 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Some Problems in Structural and Lattice Complexity
结构和格复杂性的一些问题
- 批准号:
0208013 - 财政年份:2002
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Worst-Case v.s. Average-Case Complexity and Applications to Secure Cryptography
最坏情况与最差情况
- 批准号:
0196197 - 财政年份:2000
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Worst-Case v.s. Average-Case Complexity and Applications to Secure Cryptography
最坏情况与最差情况
- 批准号:
9820806 - 财政年份:1999
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
PYI: A Study of Computational Complexity Theory
PYI:计算复杂性理论研究
- 批准号:
9496107 - 财政年份:1993
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
III: SMALL: Graph Contrastive Learning for Few-Shot Node Classification
III:SMALL:少样本节点分类的图对比学习
- 批准号:
2229461 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: A Framework for Enhancing the Resilience of Cyber Attack Classification and Clustering Mechanisms
SaTC:核心:小型:协作:增强网络攻击分类和集群机制弹性的框架
- 批准号:
2122631 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Image Classification Models based on Grid Neural Networks for Small Datasets
基于网格神经网络的小数据集图像分类模型
- 批准号:
20K11871 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Odor sensing, feature extraction and its classification by machine learning and fabrication of small and lightweight e-noses
通过机器学习和小型轻量级电子鼻的制造来进行气味传感、特征提取和分类
- 批准号:
20K11888 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CHS: Small: An Optimized Human-Machine Intelligence Framework for Single and Multi-Label Classification Tasks Through Active Learning
CHS:Small:通过主动学习实现单标签和多标签分类任务的优化人机智能框架
- 批准号:
1814595 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Collaborative: A Framework for Enhancing the Resilience of Cyber Attack Classification and Clustering Mechanisms
SaTC:核心:小型:协作:增强网络攻击分类和集群机制弹性的框架
- 批准号:
1814825 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Classification Methodology and Small Area Variation Analysis of Prescription Drugs in a Publicly Insured Senior Population
公保老年人群处方药分类方法及小区域变异分析
- 批准号:
380661 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
NeTS: Small: Collaborative Research: Distributed Approximate Packet Classification
NeTS:小型:协作研究:分布式近似数据包分类
- 批准号:
1829349 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Distribution of marine diatom small Chaetoceros spp. in coastal area in Japan and the classification using the technique of molecular biology
海洋硅藻小角毛藻的分布。
- 批准号:
17K07888 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NeTS: Small: Collaborative Research: Distributed Approximate Packet Classification
NeTS:小型:协作研究:分布式近似数据包分类
- 批准号:
1618030 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant